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Abstract— In this paper, a kinematic model for motion
coordination and control of a redundant robotic dual-arm/hand
system is derived, which allows to compute the object pose
from the joint variables of each arm and each finger as well as
from a suitable set of contact variables. This model is used
to design a two-stage control scheme to achieve a desired
object motion and maintain desired normal contact forces
applied to the object. Several secondary tasks are accomplished
through a prioritized task sequencing management of the whole
system redundancy. A simulation case study is presented to
demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Dual-arm/hand object manipulation with multi-fingered
hands is a challenging task, especially in service robotics
applications, but it has not investigated as extensively as
it should deserve. In order to achieve the desired motion
of the manipulated object, arms and fingers should operate
in a coordinated fashion. In the absence of physical inter-
action between the fingers and the object, simple motion
synchronization shall be ensured. Further, the execution of
object grasping or manipulation requires controlling also the
interaction forces to ensure grasp stability [10], [13].

From a kinematics point of view, an object manipulation
task can be assigned in terms of the motion of the fingertips
and/or in terms of the desired object motion. The planner
(or the controller) has to map the desired task into the
corresponding joint trajectories of the fingers and the arms,
thus requiring the solution of an inverse kinematics problem.

In this paper, starting from the framework presented in [5],
a kinematic model for object manipulation using a dual-
arm/hand robotic system is derived, which allows to compute
the object pose from the joint variables of each arm and
each finger (active joints), as well as from a set of contact
variables, modelled as passive joints [8]. Suitable conditions
are derived ensuring that a given motion can be imposed to
the object using only the active joints. Exploiting also the
information provided by force sensors mounted inside the
fingertips, a two-stage control scheme is proposed so as to
achieve the desired object motion and to maintain the desired
contact normal forces.
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21, 80125, Naples, Italy fabio.ruggiero@unina.it

Fig. 1. Kinematic structure of a humanoid manipulator with torso and
arms inspired to the DLR Justin.

The kinematic redundancy of the system, deriving also
from the presence of the passive joints, is suitably exploited
to satisfy a certain number of secondary tasks with lower
priority, aimed at ensuring grasp stability and manipulation
dexterity – without violating system constraints – besides the
main task corresponding to the desired object motion. To this
aim, a prioritized task sequencing with smooth transitions
between the different tasks [6] is employed.

At the best of authors knowledge, the focus of previous
papers on kinematics of multi-fingered manipulation was
on constrained kinematic control [4], [8], or manipulability
analysis [2], without considering redundancy resolution and
the benefits of integrating a force feedback in a kinematic
control loop. The effectiveness of the proposed approach
is demonstrated in simulation by considering an object
exchange task for a planar bimanual system.

II. KINEMATIC MODEL

A. Robot kinematics

Consider a bimanual manipulation system, e.g., the hu-
manoid manipulator of Fig. 1 composed by a three DOFs
torso and two DLR manipulators (each with seven DOFs).
The direct kinematics can be computed as reported in [14],
by introducing a frame Σb fixed with the base of the torso,
two frames, Σr and Σl, attached at the base of the right
and left arm, respectively, and two frames, Σrh and Σlh,
attached to the palms of the right and left hand, respectively.
Moreover, assuming that each arm ends with a robotic hand
composed by N fingers, it is useful to introduce a frame Σrfi

(Σlfi), attached to the distal phalanx of finger i (i = 1 . . . N )
of the right (left) hand.

The pose of Σrfi with respect to the base frame Σb can
be represented by the well known (4 × 4) homogeneous
transformation matrix T b

rfi(R
b
rfi ,o

b
rfi

), where Rb
rfi is the

(3×3) rotation matrix expressing the orientation of Σrfi with
respect to the base frame and ob

rfi
is the (3 × 1) position
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Fig. 2. Local parametrization of the object surface with respect to Σo

vector of the origin of Σrfi with respect to the base frame.
Hence, the direct kinematics can be expressed as

T b
rfi = T b

r(qt)T
r
rh(qrh)T

rh
rfi(qrfi) (1)

where T b
r is the matrix relating the frame at the basis of the

right arm to the base frame (which depends, in turn, on the
torso joint vector, qt), T

r
rh(qrh) is the matrix relating the

right palm frame to the base frame of the right arm (which
depends, in turn, on the joint vector of the right arm, qrh),
and T rh

rfi is the matrix relating the frame attached to finger i
to the palm frame of the right hand (which depends, in turn,
on the joint vector qrfi , where the fingers are assumed to be
identical). An equation similar to (1) holds for the left hand
fingers, with subscript l in place of subscript r.

Due to the branched structure of the manipulator, the
kinematic equations of both the right and the left arm depend
on the joint vector qt of the torso and, thus, they are not in-
dependent. Without loss of generality, hereafter it is assumed
that the torso is motionless, i.e., qt is constant; therefore, the
kinematics of the right and of the left hand can be considered
separately. Hence, in the sequel, the superscripts r and l will
be omitted and will be used explicitly only when it is required
to distinguish between the right and the left arm.

The velocity of frame Σfi with respect to the base frame
can be represented by the (6 × 1) twist vector vfi =
[ȯT

fi ωT
fi
]T , where ωfi is the angular velocity, such that

Ṙfi = S(ωfi)Rfi , with S(·) the skew-symmetric operator
representing the vector product. The superscript b, denoting
the base frame, has been omitted to simplify notation.

The differential kinematics equation relating the joint
velocities to the velocity of frame Σfi can be written as

υfi =

[
JPi(qi)
JOi(qi)

]
q̇i = JFi(qi)q̇i, (2)

where qT
i =

[
qT
h qT

fi

]T
and JFi is the Jacobian of the

arm, ending with finger i.
Therefore, the differential kinematics equation of the

whole arm-hand system, considering the N fingers as end-
effectors, can be written in the form

ṽf = J(q)q̇, (3)

where ṽT
f =

[
vT
f1

· · · vT
fN

]T
, qT =

[
qT
h qT

1 · · · qT
N

]T
,

and J is the Jacobian of the overall arm-hand system.

B. Contact kinematics

Assuming that the hand grasps a rigid object, to derive the
kinematic mapping between the joint variables of the arm-
hand system and the pose (position and orientation) of the
object, it is useful introducing an object frame Σo attached to
the object, usually chosen with the origin in the object center
of mass. Let Ro and oo denote respectively the rotation
matrix and the position vector of the origin of Σo with respect
to the base frame, and let vo denote the velocity twist vector.

Grasping situations may involve moving rather than fixed
contacts: often, both the object and the robotic fingers are
smooth surfaces, and manipulation involves rolling and/or
sliding of the fingertips on the object surface, depending
on the contact type. If the fingers and object shapes are
completely known, the contact kinematics can be described
introducing contact coordinates defined on the basis of a
suitable parametrization of the contact surfaces [7], [9].

In this work, it is assumed that the fingertips are sharp (i.e.
they end with a point, denoted as tip point) and covered by
an elastic pad. The elastic contact is modeled by introducing
a finger contact frame, Σki , attached to the soft pad and with
the origin in the tip point oki , and a spring-damper system
connecting oki with the origin of frame Σfi , attached to
the rigid part of the finger (see Fig. 2) and with the same
orientation of Σki . The displacement between Σfi and Σki ,
due to the elastic contact force, can be computed as

ofi − oki = (li −∆li)Ron̂
o(ξ), (4)

where li and 0 ≤ ∆li ≤ li are the rest position and the
compression of the spring, respectively, and n̂o is the vector
representing the outward normal to the object’s surface at
the contact point, referred to Σo.

Let Σci be the contact frame attached to the object, with
the origin at the contact point oci . Notice that, instanta-
neously, the object contact point oci and the finger contact
point oki are coincident. One of the axes of Σci , e.g., the
Z axis, is assumed to be the outward normal to the tangent
plane to the object surface at the contact point.

It is assumed that, at least locally, the position of the
contact point with respect to the object frame oo

o,ci = oo
ci−oo

o

can be parameterized in terms of a coordinate chart coi : Ui ⊂
R2 7→ R3 which maps a point ξi = [ui vi]

T ∈ Ui to the
point oo

o,ci(ξi) of the surface of the object.
Assuming that coi is a diffeomorphism and that the coordi-

nate chart is orthogonal and right-handed, contact frame Σci

can be chosen as a Gauss frame [7], where the the relative
orientation expressed by the rotation matrix Ro

ci is computed
as function of the orthogonal tangent vectors coui

= ∂coi /∂ui

and covi = ∂coi /∂vi [5].
Consider the contact kinematics from the object point of

view. Let coi (ξi(t)) denote a curve on the surface of the ob-
ject, with ξi(t) ∈ U (see Fig. 2). The corresponding motion
of Σci with respect to the base frame can be determined
as a function of: object motion, geometric parameters of the
object and the curve geometric features. Namely, the velocity



of the contact frame can be expressed as

υci =

[
ȯci

ωci

]
= GT

ξi(ξi)υoi + Jξi(ξi)ξ̇i, (5)

where Gξi(ξi) and Jξi(ξi) are respectively (6×6) and (6×2)
full rank matrices, whose expressions can be found in [5].

Consider now the contact kinematics from the fingers point
of view. The contact can be modeled with an unactuated 3-
DOF ball and socket kinematic pair centered at the origin,
oki , of Σki , fixed to the soft pad of the finger; the origin may
also move on the surface, if sliding is allowed. Therefore, the
relative orientation Rki

ci of Σci with respect to Σki can be
computed in terms of a suitable parametrization of the ball
and socked joint, e.g., Euler angles.

A vector θi =
[
θi1 θi2 θi3

]T
of XY Z Euler angles

can be considered, thus Rki
ci = Rki

ci (θi). Singularities occurs
for θ2i = ±π/2, but they do not correspond to physical
singularities of the kinematics pair.

Notice that, in the presence of a contact force, because of
the tip elasticity, frame Σki translates from the finger frame
Σfi according to (4), but the orientation does not change.
Therefore, Rki

ci = Rfi
ci . Moreover, the angular velocity of

Σci relative to Σfi can be expressed as ωfi
fi,ci

= H(θi)θ̇i,
where H is a transformation matrix depending on the joint
parameterization. In view of the decomposition ωci = ωfi +

Rfi(qi)ω
fi
fi,ci

, and from (2), the angular velocity of Σci can
be computed also as a function of joint and contact variables
in the form

ωci = JOi(qi)q̇i +Rfi(qi)H(θi)θ̇i, (6)

with JOi
defined in (2). Moreover, since the origins of Σci

and Σki coincide, the following equalities hold

oci = oki = ofi − (li −∆li)Ron̂
o
i (ξi),

ȯci = JPi(qi)q̇i + ∆̇liRon̂
o
i (ξi) (7)

+ (li −∆li)S(Ron̂
o
i (ξi))ωo − (li −∆li)Ro

∂n̂o
i (ξi)

∂ξi
ξ̇i,

with JPi defined in (2). Using (6) and (7), the velocity of
the contact frame can be expressed as

υci = JFi(q)q̇ + Jθi(θi, qi)θ̇i + J∆li(ξi)∆̇li

− J ′
ξi(ξi,∆li)ξ̇i −GT

∆li(ξi,∆li)υo, (8)

where Jθi is a (6 × 3) full rank matrix, whose detailed
expression can be found in [5], J∆li is a (6× 1) vector

J∆li =

[
Ron̂

o
i (ξi)
0

]
,

J ′
ξi is a (6× 2) full rank matrix

J ′
ξi =

(l −∆li)Ro
∂n̂o

i (ξi)

∂ξi
0

 ,

and G∆li is the (6× 6) matrix

G∆li =

[
0 0

(∆li − li)S(Ron̂
o
i (ξi)) 0

]
.

Hence, from (5) and (8), the contact kinematics of finger
i has the form

JFi(qi)q̇i + Jηi(ηi, qi,∆li)η̇i + J∆li(ξ)∆̇li =

GT
i (ηi,∆li)υo, (9)

where ηi =
[
ξTi θT

i

]T
is the vector of contact variables,

Jηi =
[
−(Jξi + J ′

ξi) Jθi

]
is a (6 × 5) full rank matrix,

and Gi = Gξi + G∆li is a (6 × 6) full rank grasp
matrix. This equation can be interpreted as the differential
kinematics equation of an “extended” finger corresponding
to the kinematic chain including the arm and finger joint
variables (active joints) and the contact variables (passive
joints), from the base frame to the contact frame [8].

It is worth noticing that equation (9) involves all the 6
components of the velocity, differently from the grasping
constraint equation usually considered (see, e.g., [9]), which
contains only the components of the velocities that are
transmitted by the contact. The reason is that the above
formulation takes into account also the velocity components
not transmitted by contact i, parameterized by the contact
variables and lying in the range space of

[
Jηi J∆li

]
. As

a consequence, Gi is always a full rank matrix.
Depending on the considered contact type [13], some of

the parameters of ξi and θi are constant. Hence, assuming
that the contact type remains unchanged during the task, the
variable parameters at each contact point are grouped in a
(nci × 1) vector ηi of contact variables, with nci ≤ 5.

Differently form the classical grasp analysis, in this work
the elasticity of the soft pad has been explicitly modeled
(although using a simplified model). This means that the
force along the normal to the contact surface is always of
elastic type. The quantity ∆li, at steady state, is related to
the normal contact force fni by the equation ∆li = fni/ki,
being ki the elastic constant of the soft pad of finger i.

C. Kinematic analysis of the grasp

Object dynamic manipulation is, in general, a difficult task,
since the number of the control variables (the active joints)
is lower than the number of configuration variables (active
and passive joints). However, in some particular situations,
it is possible to simplify the analysis, considering only the
kinematics of the system.

To this purpose, assume that force sensors are available
on the fingertips and a force control strategy is employed
to ensure a desired constant contact forces fdi along the
direction normal to the contact point. Therefore, ∆li =
∆ldi = fdi/ki can be assumed to be fixed (∆̇li = 0) and
equation (9) can be rewritten as

JFi(qi)q̇i + Jηi(ηi, qi,∆li)η̇i = GT
i (ηi,∆li)υo, (10)

On the basis of (10), it is possible to make a kinematic
classification of the grasp [13].

A grasp is redundant if the null space of the matrix[
JFi

Jηi

]
is non-null, for at least one finger i. In this

case, the mapping between the joint variables of “extended”
finger i and the object velocity is many to one: motions of



active and passive joints of the extended finger are possible
when the object is locked.

A grasp is indeterminate if the intersection of the null
spaces of [−Jηi GT

i ], for all i = 1, . . . , N , is non-null. In
this case, motions of the object and of the passive joints are
possible when the active joints of all the fingers are locked.

It is worth noticing that, also in the case of redundant
and indeterminate grasps, for a given object pose and fingers
configuration, the value of the contact variables is uniquely
determined. More details can be found in [5].

III. CONTROL SCHEME WITH REDUNDANCY RESOLUTION

In the case of kinematically determinate and, possibly,
redundant grasp, a two-stage control scheme is proposed for
the dual arm-hand manipulation system. The first stage is
an inverse kinematics scheme with redundancy resolution,
which computes the joint references for the active joints
corresponding to a desired object’s motion –assigned in terms
of the homogeneous transformation matrix T d and the corre-
sponding twist velocity vector vod– and to the desired normal
contact force fT

d =
[
fd1 · · · fdN

]
. The second stage is a

parallel control composed by a PD position controller and
a PI tip force controller, ensuring the desired object motion
and desired contact forces on the basis of the previously
computed joint references.

Namely, in ideal conditions, the joint references computed
by the kinematic stage ensure tracking of the desired object
motion, with the desired contact forces. In the presence
of modeling errors and parameters uncertainty, the contact
forces may differ from those planned. Using the force sensors
at the fingertips, a force control strategy is adopted to ensure
the desired contact force by modifying the joint references
computed by the inverse kinematics stage. In principle, the
joint references of the overall manipulation system could
be involved; however, it is reasonable to design a force
controller acting only on the joints of the fingers.

In order to derive the equations of the first stage, starting
from (9), it is useful to write the differential kinematic
equations of the whole (right or left) arm-hand system as

J(q)q̇ + Jη(η, q,∆l)η̇ = GT(η,∆l)ṽo, (11)

where J is the Jacobian of the arm-hand system defined
in (3), Jη = diag{Jη1 , · · · ,JηN

} is a block diagonal
matrix corresponding to the vector of passive joints ηT =[
ηT
1 · · · ηT

N

]T
, G is the block diagonal grasp matrix G =

diag{G1, · · · ,GN}, ∆lT =
[
∆l1 · · · ∆lN

]T
and ṽT

o =[
vT
o · · · vT

o

]T
.

From Eq. (11), the following closed-loop inverse kinemat-
ics algorithm can be derived:[

q̇d

η̇d

]
= J̃

†
(qd,ηd,∆ld)G

T(ṽod +Koẽo) +Noσ, (12)

where J̃ =
[
J Jη

]
, the symbol † denotes a right

(weighted) pseudo-inverse, ṽT
od

=
[
vT
od

· · · vT
od

]T
, Ko

is a diagonal and positive definite matrix gain, ẽTo =[
eTo1 · · · eToN

]T
, being eoi the pose error between the desired

and the current object pose computed on the basis of the
direct kinematics of the extended finger i, and No = I−J̃

†
J̃

is a projector in the null space of the Jacobian matrix J̃ . The
quantity ∆ld in (12) is the vector collecting the finger soft
pad deformations ∆ldi = fdi/ki corresponding to the desired
contact force fdi.

Equation (12) is used to compute the joint reference vector
qd for the controller of the second stage.

In view of the above considerations, any kind of joint
motion control can be adopted for the arms of the bi-manual
manipulation system, receiving as input the joint references
computed by the inverse kinematics scheme. In this paper,
the joint torques for finger i are set according to the parallel
force/position control law

τ i = JT
i (qi)

(
kP∆pi + fdi + kF∆fni + kI

∫ t

0

∆fnidτ
)

−kdq̇i + gi(qi) (13)

where gi(qi) is the vector of the gravity torque of finger i,
∆pi denotes the position error of finger i between the desired
value computed through direct kinematics starting from qdi

and the current one, and ∆fni is the projection of the force
error along the normal to the object surface at the contact
point. The above control law regulates the contact force to
the desired value at the expense of a position error (i.e., a
displacement of the positions of the fingers with respect to
the palm), in the presence of uncertainties.

A. Redundancy resolution

Since the system may be highly redundant, multiple tasks
could be fulfilled, provided that they are suitably arranged
in a priority order, according to the augmented projection
method [1]. Consider m secondary tasks, each expressed
by a task function σth(q̃) (h = 1, . . . ,m), where q̃ =[
qT
d ηT

d

]T
. According to the augmented projection method

[1], the control law (12) can be replaced by

˙̃q= J̃
†
(q̃,∆ld)G

T(ṽod+Koẽo) +

m∑
h=1

N(JA
th
)J†

th
Ktheth ,

(14)
where J th is the Jacobian of the hth task, JA

th
is the

augmented Jacobian, given by

JA
th
(q̃,∆ld) =

[
J̃

T
(q̃,∆ld) J

T
t1(q̃) . . . J

T
th−1

(q̃)
]T

.

N(JA
th
) is a null projector of the matrix JA

th
, Kth is a

positive definite gain matrix and eth = σthd
−σth is the task

error, being σthd
the desired value of the hth task variable.

The augmented projection method can be also adopted
to fulfill mechanical or environmental constraints, such as
joint limits and obstacle avoidance (other fingers or the
grasped object). To this aim, each constraint can be described
by means of a cost function, C(q̃), increasing when the
manipulator comes close to violate the constraint. In order to
minimize the cost function, the manipulator could be moved
according to the opposite of the gradient −∇T

q̃C(q̃), that



could be considered as a fictitious force moving the ma-
nipulator away from configurations violating the constraints.
In order to include the constraints in (14), an overall cost
function CΣ, given by

CΣ(q̃) =
∑
cs

γcsCcs(q̃), (15)

is introduced, where γcs and Ccs are a positive weight and
a cost function, respectively, referred to the csth constraint.

IV. TASK SEQUENCING

If the system comes close to violate a constraint, a high
level supervisor has to remove some secondary tasks and
relax enough DOFs to fulfill the constraint [6]. To manage in
a correct way removal/insertion of tasks from/into the stack
(task sequencing), a suitable task supervisor was designed,
based on a three layers architecture: the lower layer computes
the motion variables on the basis of a stack of active
tasks; the intermediate layer determines which tasks must be
removed from the stack in order to respect the constraints;
the upper layer verifies if the previously removed tasks can
be pushed back in the stack.

A. Removal and insertion of the tasks
A task must be removed from the stack when the predicted

value of the overall cost function at the next time step is
above a suitable defined threshold, C. Let T be the sampling
time adopted to implement the control law and κT the actual
time, the configuration at the time instant (κ + 1)T can be
estimated as followŝ̃q(κ+ 1) = q̃(κ) + T ˙̃q(κ). (16)

Hence, a task must be removed from the stack if

CΣ
(̂̃q(κ+ 1)

)
≥ C. (17)

Once it has been ascertained that a task must be removed
from the stack, the problem is to detect which task has to be
removed. To the purpose, several criteria have been proposed
in [6], with the aim of verifying the conflict between the
constraints and each task. In this paper, the overall cost
function gradient is projected in the null space of the task
Jacobian, i.e.,

Pth =
∥∥∥N (J th)

(
−∇T

q̃CΣ
)∥∥∥ , h = 1, . . . ,m , (18)

the task corresponding to the minimum of Pth is then
removed, since its projection into the null-space of J th

should be, ideally, zero to ensure constraint fulfillment.
The tasks removed by the second layer must be reinserted

in the stack as soon as possible, provided that the constraints
will not be violated. A prediction of the CΣ evolution at the
next time step has to be evaluated by considering the effect
of each task currently out of the stack, i.e.,̂̃qth

(κ+ 1) = q̃(κ) + J†
th
eth(κ) . (19)

Therefore, let C < C be a suitably chosen threshold, a task
is pushed back in the stack if

CΣ
(̂̃qth

(κ+ 1)
)
≤ C . (20)

Fig. 3. Manipulation system.
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Fig. 4. Snapshots describing the case study.

B. Smooth transition and final control law

Task sequencing might cause discontinuities in the com-
manded joint velocities due to the change of active tasks in
the stack. For each task a variable gain, ρth , is introduced
to achieve a smooth behavior of the controller output

ρth(t)=

{
1−e−µ(t−τ) if the h-th task is in the stack,
e−µ(t−τ ′) if the h-th task is out of the stack,

where τ and τ ′ are the time instant in which the task is
inserted in the stack and the time instant in which it is
removed, respectively, and 1/µ is a time constant.

Hence, the first stage control law can be written in its
complete form

˙̃q = J̃
†
(q̃,∆ld)G

T(ṽod +Koẽo)+ (21)

+

m∑
h=1

ρthN(JA
th
)J†

th
Ktheth−k∇N(JA

tm+1
)∇T

q̃CΣ,

where k∇ is a positive gain.

V. CASE STUDY

The presented control scheme has been tested on a ma-
nipulation system grasping a certain object, represented in
Fig. 3, composed by two identical planar grippers, each with
two branches and 7 DOFs, resulting in a total of N = 4
fingers and 14 active joints. The idea is that of performing
an object exchange.

It is assumed, in its initial configuration, the system grasps
the object with only tips 1 and 2, which are in a force
closure condition, since the contact normal forces are acting
on the same straight line [9]. Tips 3 and 4 approach the
object until they reach a condition in which all the tips are
in contact with the object. The main task consists in keeping



the object still, while tips 3 and 4 move in order to achieve
a force closure condition upon the object in a dexterous
configuration, without violating a certain number of limits
and constraints. Then, fingers 1 and 2 can leave the object,
simulating in this way an hand-to-hand object passing.

The force control loop ensures that the planned forces are
applied on the object. In this case study, the desired forces
for tips 3 and 4 are negligible, since they have to slide on
the object’s surface so as to reconfigure themselves to reach
force closure condition. The desired forces for tips 1 and 2
are dynamically planned, on the basis of the current value of
the forces exerted by the fingers, in order to produce zero net
force and moment on the object and to balance disturbances
caused by movements of the other two fingertips.

A sequence of snapshots representing the described task
are shown in Fig. 4. It can be noticed that, in the final
configuration (fifth snapshot), fingers 3 and 4 are in a force
closure condition, since the normals at the contact points act
on the same straight line.

A. Subtasks and constraints

Four different subtasks have been considered: the first two,
aimed at choosing the optimal contact points, are related to
the grasp quality; the others regard the manipulability and
the distance between the palm and the grasped object.

Unit frictionless equilibrium. The grasp quality can be
guaranteed by moving the contact points on the object
surface until the unit frictionless equilibrium is reached. This
condition is a special case of a force-closure grasp; it is
satisfied when two positive indices, called frictionless force
(εf ) and moment (εm) residuals, are zero [3], [11]

εf =
1

2
fTf , f =

4∑
i=1

n̂o
i , (22)

εm =
1

2
mTm , m =

4∑
i=1

coi × n̂o
i , (23)

where i = 1, . . . , 4, and where n̂o
i (ξi) and coi (ξi) are the

surface normal and the position of the ith contact point,
respectively, both referred to the object frame. It has been
shown that, for two or more contact points, unit frictionless
equilibrium is a force closure condition for any nonzero
friction coefficient [11], [12].

Manipulability. In order to keep the manipulator far from
singularities, a manipulability index of each finger can be
considered. In detail, the following manipulability measure,
which vanishes at a singular configuration, is adopted for the
ith finger [14]

wi(qi) =

√
det

(
J i(qi)J

T
i (qi)

)
, i = 1, . . . , 4 . (24)

The considered task function is then

σwi =

{
1
2 (wi − wi (qi))

2, ifwi (qi) < wi

0, otherwise, (25)

where wi is a threshold for the task activation. The desired
value, σwid, is zero.
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Fig. 5. Object’s pose errors for each finger.

Distance between palm and object. Consider the position
of the palm centroid in the object frame, po

c , and a suitably
chosen surface surrounding the object, S, characterized by
the equation F(po) = 0. When the centroid is inside the
surface S, a collision can occur; therefore, the centroid must
be moved on the boundary, i.e, in a position such that
F(po

c) = 0. Hence, the task function is the following

σP (p
o
c) =

{
F(po

c), if the centroid is inside S,
0, otherwise. (26)

In the following the two considered constraints are described.
Joint-limit avoidance. A physical constraint to the motion

of the system is imposed by the mechanical joint limits. The
system configuration is considered safe if qj ∈ [q

j
, qj ], for

j = 1, . . . , 14, with q
j

and qj suitable chosen values far
enough from the limits. The cost function, directly defined
in the joint space, is the following

CJL(q) =
14∑
j=1

cj(qj), (27)

cj(qj) =


kj e

δ(qj−q
j
)2 − 1, if qj ≤ q

j
,

0, if q
j
< qj ≤ qj ,

kj e
δ(qj−qj)

2

− 1, if qj > qj .

where kj and δ are positive constants.
Collision avoidance. In order to avoid collisions between

the fingers, it is imposed the distance between the fingers
be larger than a safety value, ds; hence, if dii′ denotes the
distance between the ith and the i′th finger, the following
cost function can be formalized

CCA(q̃) =
∑
i,i′

cii′(q̃), (28)

where the sum is extended to all the couples of fingers,

cii′(dii′) =

 kii′
ds − dii′

d2ii′
, if dii′ ≤ ds,

0, if dii′ > ds,
(29)

and kii′ is a positive gain.

B. Simulation results

The parameters of the elastic contact are: 5 · 104 N/m
for the springs elastic coefficients, 5 Ns2/ m for the springs
damper coefficients and li = 5 · 10−3 m for the springs
rest condition. The parameters used to define the subtasks
are chosen as follows: wi = 2.55 for the manipulability
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Fig. 6. Finger force errors.
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subtask, q
j
= −110o, qj = 110o, kj = 5, δ = 2 for the joint-

limit avoidance and kii′ = 1, ds = 5 cm for the collision
avoidance. In the system of Fig. 3 the palm is represented by
the ramification point of the right manipulator. The task has
a duration of 4.5 s; a Runge-Kutta integration method, with
a step size of 2 ms, has been used to simulate the system.

Fig. 5 shows the time history of the norm of the object’s
pose error for each finger (position on the left, orientation on
the right). Fig. 6 shows the evolution of the force error for
each finger: in detail, finger 1 is much more affected by the
motion of fingers 3 and 4 than 2; the desired value for the
normal force at tips 3 and 4 is very small and it is impossible
to see remarkable variations in the time history.

Fig. 7 shows the force and moment residuals, εf and εm.
Since both residuals asymptotically converge to zero, it is
clear that fingers 3 and 4 reach a force closure condition.

Fig. 8 shows the time history of the manipulability mea-
sure (left) and the distance from the palm function σP in (26)
(right). The manipulability measure of each finger is above
the limit value wi, while, σP is zero when the task is not
activated, since the palm is sufficiently far from the object.

Finally Fig. 9 depicts the time history of the stack status
during the simulation. It can be noticed that the main task
is never removed from the stack, while the other tasks are
removed when some constraints are near to be violated.
When the system is in a safe condition with respect to the
constraints, the task are re-inserted in the stack maintaining
their previous priorities. Notice that the label assigned at each
task denotes its priority in the stack.

VI. CONCLUSION AND FUTURE WORK

In this paper the kinematic model of a redundant robotic
manipulation system has been considered. A two-stage
control scheme has been designed to achieve the desired
object motion and the desired normal contact forces. The
redundancy of the whole system has been exploited to
fulfil a set of prioritized constraints and secondary tasks.
Simulation results show that the adopted control scheme
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Fig. 9. Time history about the tasks in the stack status: task 1 is the
main task, corresponding to keep the object fixed; 2 and 3 are the force and
moment residual tasks, respectively; 4 is the manipulability task, while 5 is
the task about distance between the palms and the object.

ensures successful achievement of the main task, without
violating any imposed constraint. Future work will be fo-
cused on manipulating an object with unknown shape, with
consequent online estimation of the related Jacobians, and
on an experimental validation of the proposed algorithm.
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