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Abstract

This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian
form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the
control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in
the control signal is neutralized by applying Padé approximant and augmenting the system states. An assistant system
with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as
a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter
uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such
as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a
two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness.

Keywords: Impulsive hybrid systems, Port-Hamiltonian dynamics, Extended state observer, Fractional sliding
surface, Finite-time control, Input delay

1. Introduction

The port-controlled Hamiltonian (pH) formulation is a powerful tool for modeling electrical and mechanical sys-
tems, as well as most of the dynamical systems [1]. In the last years, outstanding outcomes have been reported on
control and stability analysis of pH systems [2, 3, 4]. Most of the presented results consider the systems to work on one
operation mode. In contrast, in many situations, interaction conditions impose hybrid features on system dynamics
(i.e., instantaneous jumps in some system states’ values caused by impacts or similar). On the other hand, measure-
ment problems of high order states, actuator nonlinearities, and undesired effects of lumped uncertainties and external
disturbances are challenges that the designed control system must cope with. Besides, in interactive hybrid systems,
the convergence speed or transient state response within a fixed time is essential. We propose an observer-based finite-
time robust control algorithm for hybrid dynamical systems in pH form to tackle these problems, which preserve the
closed-loop control system’s stability against instantaneous changes in the state values and actuator constraints.

1.1. Related works

Hybrid systems with parameters or state jumps, or varying environmental properties, belong to the class of dy-
namical systems described by one(multiple) continuous-time behavior(s) with state interruption in some switching
instants [5, 6, 7]. These systems are successful in representing the intricate and latent features of real systems oc-
curring in engineering applications [8, 9]. Many works have been reported in the literature on the stability of hybrid
systems [10, 11]. Common Lyapunov functions (CLFs) and multiple Lyapunov functions (MLFs) are usually em-
ployed as powerful tools to investigate the stabilization problem of hybrid systems [12]. Average dwell time (ADT) is
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another useful technique [13]. H∞-based robust controller design was addressed in [14] along with an ADT method
for the stability analysis.

As well known, the dynamic equations of most of the electro-mechanical processes such as electric vehicles,
unmanned aerial vehicles, and surgery robotic systems belong to the particular class of pH dynamical systems [15,
16, 17]. In a pH system, the Hamiltonian function, which is the sum of kinetic and potential energies, can be labeled
as a Lyapunov function candidate in the stability analysis. In the last decade, pH-based modeling and control have
attracted much attention and have provided significant outcomes [18, 19, 20]. In practical applications, it is common
the possibility to measure the position states only: the velocity states are often not measurable or noisy. On the other
hand, other terms that affect the system dynamics, such as parameter uncertainty and external disturbances, may not
be measurable. In this direction, a full-order state observer for a general class of pH systems with exponential stability
property was proposed in [21]. In that work, the effects of parameter uncertainties and external disturbance were not
considered. By developing a composite control plan and based on a nonlinear disturbance estimator, pH systems’
stabilization problem was studied in [22], where the proposed control scheme assumes that all the system states are
measurable. Recently, a work about the stabilization problem and H∞ control of a hybrid pH system with unstable
mode and actuator saturation has been published [23].

An appealing mechanical system falling within the category of pH hybrid systems is the ball juggling robot. Jug-
gling is based on the repetitively coordinated execution of the batting nonprehensile motion primitive [24], which
combines catching and throwing in a single collision instant [25]. Juggling tasks can be thus considered part of coop-
erative nonprehensile manipulation action in which the dynamics of the manipulated objects and the skillful function
of the jugglers are taken into account [26, 25, 27, 28, 29]. Juggling actions are challenging for humans because they
need high concentration, rapid reaction, dexterity, and high adaptability to the environment. Besides, the juggled
object is repetitively caught and thrown, thus creating and breaking contacts with the manipulator iteratively. There-
fore, from the viewpoint of dynamic modeling of the juggler robots, the juggler’s equations can be described by a
hybrid/switching dynamics. In robotic juggler systems, usually, more control energy is needed due to the jugglers’
high-speed motion, the existence of impact effects, parameter uncertainties, and external disturbances. This may cause
saturation of the actuators. Neglecting of the actuator saturation problem may leads to the performance degradation or
even instability of the closed-loop system [30]. Moreover, factors such as the computation time, the communication
channel, the sampling time, and the sensor measurements may lead to input delays in the control signal. The interac-
tion between the delayed control signal and the system’s switching property may deteriorate the performance or even
lead to instability. A composite control design for a class of hybrid impulsive systems with time-delay in the states,
actuator saturation, and matched/mismatched disturbances was studied in [31]. In [32], finite-time optimal control
design for a class of double integrator system under input delay and actuator saturation has been investigated.

Finite-time stability analysis is a criterion that can be used for evaluating the stability characteristics in dynamical
systems. Newly, the finite-time control problem for stabilizing hybrid systems with input-delay and actuator saturation
has been investigated [33], where the addressed system is linear and not robust against parameter uncertainties and
external disturbances. Using fractional-operators in design procedure can significantly improve the transient and
steady-state performance, reinforce the robustness, and reduce/suppress the chattering phenomena [34, 35]. Therefore,
fractional calculus was used to control singularly perturbed systems [36], solve optimal control problems [37], control
legged robots [38], carry out fault diagnosis and classification [39], and address formation control of multi-agent
systems [40].

1.2. Contributions
Despite exemplary achievements in the control and stabilization of hybrid systems, several issues still need to be

discussed, such as state observer design in practical applications, disturbance reconstruction, finite-time convergence
problem, and constraints and delays in the control signal, simultaneously. Therefore, in this study, a finite-time robust
control algorithm, based on a fractional-order controller, is proposed for hybrid pH systems, which preserves the
closed-loop stability against interaction impacts and actuators saturation.

The key contributions of this research work are summarized in the following. i) An extended state observer is
proposed to estimate velocities state and lumped disturbances in a finite-time. ii) Using Padé approximation, an
auxiliary system is designed. A new variable is added to the main system, eliminating the time delay of the control
signal from the calculations. iii) To deal with actuator saturation, another assistant system with finite-time convergence
property is introduced. iv) A finite-time fractional-order sliding surface is defined. Based on fractional calculus, a
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robust centralized controller is designed. v) The robustness against unknown parameter uncertainty and external
disturbance is fulfilled by accommodating the central controller with the estimated results. vi) Lyapunov stability
theorem ensures the finite-time stability of the close loop system.

To bolster the contributions mentioned above, the trajectory tracking and the robustness performance of two jug-
gler robots in a ball-playing scenario, under parameter uncertainty and external disturbance, are evaluated in some
simulation case studies.

1.3. Outline

The remaining of this paper is organized as follows. The hybrid dynamic description of the Lagrangian systems
and some preliminaries are exhibited in Section 2. The main results on the extended-stated observer design, the robust
fractional-order sliding mode controller, and the stability analysis of the closed-loop system are presented in Section 3.
In Section 4, numerical simulations are provided to test the effectiveness of the theoretical results. The conclusion is
brought in Section 5.

2. Problem statement and some preliminaries

In this section, some preliminary knowledge of mechanical processes with hybrid dynamics in the pH form and
the fractional calculus are introduced.

2.1. Modelling of hybrid mechanical processes in pH form

Without loss of generality, in order to develop the mathematical modelling part, it is supposed that an impact
causes the instantaneous jump in some system state values. Hence, two phases can be recognzied: a free-motion or
impact-less phase and an impact phase. Using Euler-Lagrange formulation, taking into account both time delay in the
control signal and saturation constraints, the impulsive hybrid equations of a mechanical system can be written as

M(q)q̈ + C(q, q̇)q̇ + g0(q) + δ(q, q̇) = Bsat(τ(t − td)) + τd, ϑ(q, q̇) 6= 0
q+ = ∆n(q)q−, ϑ(q, q̇) = 0
q̇+ = ∆s(q, q̇)q̇−, ϑ(q, q̇) = 0

(1)

where q ∈ Rn represents the state and q̇ ∈ Rn its time derivative; M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, and g0(q) ∈ Rn are
called the inertia matrix, the Coriolis matrix, and the vector of gravitational terms, respectively. Also, B ∈ Rn×m is the
allocation matrix for the actuation τ ∈ Rm, with 0 < m ≤ n, while td ∈ R is the related time delay. The saturation
function sat(τ) =

[
sat(τ1) · · · sat(τm)

]T
is defined as

sat(τi) =


τmax τi ≥ τmax,

τmin τi ≤ τmin,

τi otherwise,

where τi ∈ R is the i-th component of τ, with i = 1, . . . ,m, and τmax, τmin ∈ R are the maximum and minimum allowed
values of the i-th input component, respectively. The function δ(q, q̇) ∈ Rn contains all uncertainty and damping terms
of the system, while τd ∈ Rn represents the external disturbance vector. Besides, ϑ(q, q̇) = 0 is a state-dependent
impact condition, the apexes + and − denote the quantities at a time instant after and before the impact, respectively,
and ∆n,∆s(q, q̇) ∈ Rn×n are the position renaming and the velocity resetting matrices, respectively.

Remark 1. It is important to note that most of the robotic systems subjected to the impacts, such as biped robots and
impact mechanical oscillatorsm can be modelled by the impulsive hybrid nonlinear dynamics described in (1) [41,
42, 43]. This impulsive hybrid system combines two different dynamics: a continuous-time one, which defines its flux
if ϑ(q, q̇) has nonzero value (we call those continuous subsystems modes); discrete-time dynamics, which describes
the state jumps if ϑ(q, q̇) takes a zero value (those are the discrete modes of system). The variable ϑ(q, q̇) orchestrates
the transition between continuous and discrete modes.
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Consider the Lagrangian function of the system (1) as

L(q, q̇) =
1
2

q̇T M(q)q̇ − V(q), (2)

where V(q) ∈ R is the potential energy of (1). Defining the momentum vector of the system as p =
∂L
∂q̇

= M(q)q̇ ∈ Rn,

the dynamic equations (1) in impact-less times t 6= tk can be rewritten asq̇ = M−1(q)p,
ṗ = Ṁ(q)q̇ −C(q, q̇)q̇ − g0(q) + Bsat(τ(t − td)) + τd − δ(q, q̇),

(3)

The Hamiltonian function of (3) is defined by [44, p. 165]

H(q, p) = pT q̇ − L(q, p), (4)

where it is worth recalling that q̇ = M(q)−1 p and then L(q, p) =
1
2

pT M(q)−1 p − V(q). The partial derivative of the
Hamiltonian with respect to p is calculated as [44, p. 167]

∇pH =
∂H
∂p

= q̇ = M(q)−1 p, (5)

while its partial derivate with respect to q is calculated as [44, p. 165]

∇qH =
∂L(q, q̇)
∂q

. (6)

Recalling the Euler-Lagrange equation

d
dt

(∂L(q, q̇)
∂q̇

)
−
∂L(q, q̇)
∂q

= Bτ, (7)

it yields
∂L
∂q

= ṗ − Bτ. (8)

Folding (8) into (6), yields

∇qH =
∂L(q, q̇)
∂q

= −ṗ + Bτ (9)

From (3), (5), (9), and considering saturation constraint, parameter uncertainty and external disturbance terms, it is
evident that ∇pH = M−1(q)p, ∇qH = C(q, q̇)q̇ + g0(q) − Ṁ(q)q̇.

Therefore, the general pH form of (1) can be expressed asẋ = Ω∇H + Gsat (τ(t − td)) + d(x, t), ϑ(x) 6= 0,
x+ = ∆p(x), ϑ(x) = 0,

(10)

with x =
[
xT

1 xT
2

]T
=

[
qT pT

]T
, ∇H =

[(
∇qH

)T (
∇pH

)
)
T
]T

, G =
[
Om×n BT

]T
, d(x, t) =

[
0n

T (τd − δ(q, q̇))T
]T

,

and ∆p(x) =
[
(∆nq−)T δp(x,∆s)T

]T
in which the vector δp(x,∆s) addresses the impact at the momenta’s level, that is

δp(x,∆s) = p+ = M(q+)q̇+ = M(∆nq−)∆sq̇− = M(∆nq−)∆sM−1(q−)p−, and

Ω =

[
On×n In

−In On×n

]
,

where In ∈ Rn×n and Oi× j ∈ Ri× j are identity and zero matrices of proper dimensions, respectively, and 0n ∈ Rn is the
zero vector.
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Theorem 1. For a nonlinear system ẋ = −Σ∇H(x), where Σ ∈ R2n×2n is a positive definite matrix, if the energy
function H(x) is designed as

H(x) = (xT Y x)β, (11)

where 1 < β < 2, and Y ∈ R2n×2n is a positive definite matrix, then the system is finite-time stable.

Proof. See [45, Theorem 1].

Remark 2. The value of β in (11) determines the type of stability (i.e., finite-time or asymptotic stability). In particular,
if β ≥ 2 then the selected Hamiltonian function (11) cannot guarantee the finite-time stability, and the obtained results
decline to the traditional asymptotic stability [46].

Definition 1 ([47]). The hybrid system (10), with τ = 0 and d(x, t) = 0, under the condition H(x(t0)) < b1 ⇒

H(x(t)) < b2, ∀t ∈ (0,T f ], where 0 < b1 < b2 and T f > 0, is finite-time stable.

Lemma 1 ([38]). For a nonlinear system ẋ = f (x(t), t), if the relation between the Lyapunov function V(x(t)) and its
time derivative is

V̇(x(t)) = −aV(x(t)) − bVc(x(t)), (12)

where a > 0, b > 0, and 0 < c < 1, then the state trajectories will converge to the equilibrium point x(t) = 0 in a finite
time tr ∈ R characterized by

tr ≤ t0 +
1

a(1 − c)
ln

(
aV1−c(x(t0)) + b

b

)
(13)

where ln(·) is the natural logarithmic function, and t0 ∈ R is the initial time.

Remark 3. For any scalar function Fi = (xT Υix)β > 0, where Υi ∈ R2n×2n is a diagonal positive definite matrix and

1 < β < 2, if Υi ≤ %

1
βΥ j holds element-wise for each diagonal component, with % > 1 and i 6= j, then Fi ≤ %F j.

2.2. Fractional calculus

To contextualize this work, the fundamental definition and properties of fractional calculus follow.
Among the fractional operators, Caputo and Riemann–Liouville ones are often employed within the field of con-

trol systems [40]. Since the Caputo fractional derivative has well-accepted physical interpretations [48], the related
fractional operator is here employed. The Caputo fractional derivative of order α ≥ 0 is defined as

Dα f (t) =
1

Γ(n − α)

∫ t

t0

f n(r)
(t − r)α−n+1 dr, (14)

where f (t) ∈ Rn is a time-dependent function, t0 ∈ R is the initial integration time, m − 1 < α < m, m ≥ 1, and Γ is
the so-called Gamma function

Γ(z) =

∫ ∞

0
ιz−1e−ιdι. (15)

Property 1 ([48]). For the optional scalars a1, a2 ∈ R, the fractional orders α1, α2 ≥ 0, and two time-dependent
functions f1(t), f2(t) ∈ R, the following relations hold

Dα(a1 f1(t) + a2 f2(t)) = a1Dα f1(t) + a2Dα f2(t), (16)

D1−α(Dα f (t)) = ḟ (t), (17)

and
Dα1 (Dα2 f (t)) = Dα1+α2 f (t). (18)
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2.3. Problem statement

This study aims to design a robust control law for the impulsive hybrid pH system (10), leading the measured
states to the desired ones. The joint velocities are not measurable. An extended state observer-based robust fractional-
order sliding mode controller is proposed. The controller structure ensures that the closed-loop system signals are
finite-time stable in both impact-less and impact phases.

Remark 4. Notice that our previous work [45] requires both position information and velocity information. Here,
the devised control law requires position information only. Also, differently from [45], actuator saturation is here
considered explicitly. Besides, this work also introduces (unknown) time delay in the control action. Finally, the
proposed extended-state observer estimates the system states and the unknown function simultaneously.

Figure 1: The proposed observer-based robust control scheme for hybrid mechanical system.

3. Main theoretical results

The proposed control scheme is shown in Fig. 1. The main focus is put on the finite-time extended state, the
disturbance observer design, and the centralized robust fractional-order sliding-mode controller. Assistant systems
cope with saturation and input time-delay. In the following, the design of these blocks are explained. Firstly, the state
observer and the robust controller are designed without considering impact conditions. These are then considered for
the stability of the closed-loop system.

In the following, Υi, with i = {o, s, c}, are diagonal matrix of appropriate dimension, in which the entries are
positive time-decreasing functions. Explicit dependency on time is dropped for simplicity.

3.1. Finite-time extended-state observer design

In this section, the design procedure for the extended state observer is explained.
Adding and subtracting the term Kxx to the continuous part of the impulsive hybrid pH system (10) yields

ẋ = −Kxx + φ(x) + Gsat(τ(t − td)) + d(x, t), (19)

where Kx ∈ R2n×2n is a positive definite matrix and φ(x) = Ω∇H(x) + Kxx ∈ R2n. Defining a new state variable
w = d(x, t) ∈ R2n, the extended state form of the system (19) becomes

ẋ = −Kxx + φ(x) + Gsat(τ(t − td)) + w,
ẇ = θ,

y = L0x,
(20)
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where θ ∈ R2n is the time derivative of d(x, t), y ∈ Rn is the output vector of the system and includes the measurable
states, and L0 =

[
In On×n

]
∈ Rn×2n is the output matrix. Consider the following coordinates transformation[

x
w

]
=

[
I2n O2n×2n

Λ I2n

] [
z1
z2

]
, (21)

where z1 ∈ R2n and z2 ∈ R2n are new state vectors and Λ ∈ R2n×2n is a positive definite matrix. By applying (21)
to (20), the new form of the extended state hybrid pH system in the z-coordinates is obtained asż = Az + Φ(z) + Gsat (τz(t − td)) + θ̄,

y = Lz,
(22)

where z =
[
zT

1 zT
2

]T
, Φ(z) =

[
φ(x)T −Λφ(x)T

]T
, G = diag(G,−ΛG), L =

[
L0 On×2n

]
, θ̄ =

[
OT

2n θT
]T

, τz =[
τT τT

]T
, and A =

(
Λ − Kx I2n

−Λ(Λ − Kx) −Λ

)
.

The proposed finite time extended state and disturbance observer has the following structure˙̂z = Aẑ + Φ(ẑ) + Gsat (τz(t − td)) − Lo1 ỹσ − Lo2 tanh (ỹ/ρ) ,
ŷ = Lẑ,

(23)

where ẑ ∈ R4n is the estimated value of z, ŷ ∈ Rn is the estimated value of y, ỹ = ŷ − y ∈ Rn is the output estimation
error, Lo1 ∈ R4n×n and Lo2 ∈ R4n×n are the observer gain matrices, 0 < σ < 1, and ρ > 0 determines the shape of the
tanh(·) function.

Defining the observer error vector as z̃ = ẑ − z, its time derivative along the trajectories of (22) and (23) yields˙̃z = Az̃ + Φ(ẑ) − Φ(z) − Lo1 ỹσ − Lo2 tanh (ỹ/ρ) − θ̄,
ỹ = Lz̃.

(24)

Assumption 1. The disturbance function changes continuously and without any disruption over time. This means
that the norm of θ̄ is bounded, ‖θ̄‖≤ lθ, where lθ > 0.

Assumption 2. For two state variables z and ẑ, and γ > 0, the following Lipchitz condition holds ‖Φ(ẑ) − Φ(z)‖≤
γ‖ẑ − z‖.

Theorem 2. Consider the dynamic equation of the extended state and disturbance observer tracking error (24).
Under the Assumptions 1 and 2, if the positive definite matrix Q satisfies the following Lyapunov equation

AT Υo + ΥoA = −Q, (25)

where Υo ∈ R4n×4n, and if ‖Lo2‖≥ lθ, then the estimation error of the extended state z̃ will converge to the origin
through the following finite reaching time

tr ≤ t0+
1

(λmin(QΥ−1
o ) − 2γ)(1 − σ)

ln


(λmin(QΥ−1

o ) − 2γ)Vo

1 − σ
β + 2λmin(Lo1 Lσ)

2λmin(Lo1 Lσ)

 , (26)

where γ > 0, Vo(·) is the energy function of (24) and t0 is the initial time instant.

Proof. Let the Lyapunov function be
Vo(z̃(t)) = Ho(z̃(t)) =

(
z̃T Υoz̃

)β
. (27)
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Taking the time derivative of (27) along the dynamic of the observer tracking error (24) gives

V̇o(z̃(t)) =2β
(
z̃T Υoz̃

)β−1[1
2

z̃T (AT Υo + ΥoA)z̃ + z̃T Υo (Φ(ẑ) − Φ(z)) − z̃T ΥoLo1 (Lz̃)σ − z̃T ΥoLo2 tanh (Lz̃/ρ) − z̃T Υoθ̄
]
.

(28)

Folding (25) into (28) and distributing 2β
(
z̃T Υoz̃

)β−1
on the right side of (28) yield

V̇o(z̃(t)) ≤ − β
(
z̃T Υoz̃

)β−1
z̃T Qz̃ + 2β

(
z̃T Υoz̃

)β−1
‖z̃T Υo‖‖Φ(ẑ) − Φ(z)‖−2β

(
z̃T Υoz̃

)β−1
z̃T ΥoLo1 (Lz̃)σ

− 2β
(
z̃T Υoz̃

)β−1
z̃T ΥoLo2 tanh (Lz̃/ρ) − 2β

(
z̃T Υoz̃

)β−1
‖z̃T Υo‖‖θ̄‖.

(29)

Invoking Assumptions 1 and 2 in (29) gives

V̇o(z̃(t)) ≤ − β
(
z̃T Υoz̃

)β−1
z̃T Qz̃ + 2βγ

(
z̃T Υoz̃

)β−1
‖z̃T Υo‖‖z̃‖−2β

(
z̃T Υoz̃

)β−1
z̃T ΥoLo1 Lσz̃σ

+ 2β
(
z̃T Υoz̃

)β−1
‖z̃T Υo‖

(
−‖Lo2‖+‖lθ‖

)
.

(30)

If the norm of observer gain is chosen such as ‖Lo2‖≥ lθ, then it yields

V̇o(z̃(t)) ≤ −β
(
z̃T Υoz̃

)β−1
z̃T Qz̃ + 2βγ

(
z̃T Υoz̃

)β−1
‖z̃T Υo‖‖z̃‖−2β

(
z̃T Υoz̃

)β−1
z̃T ΥoLo1 Lσz̃σ

≤ −β(λmin(QΥ−1
o ) − 2γ)Vo(z̃(t)) − 2βλmin(Lo1 Lσ)Vo

β + σ − 1
β (z̃(t)).

(31)

Since 0 <
β + σ − 1

β
< 1, if the condition λmin(QΥ−1

o ) > 2γ holds, from Lemma1 the finite-time stability of the

extended observer error system (24) is concluded. Therefore, the exact value of z(t) is precisely estimated within tr.
Accordingly, applying the transformation matrix (21) to the (24), the estimated values of state vector x and lumped
disturbance function d(x, t) are extracted.

Remark 5. One of the characteristics of changing coordinates is that the estimation problem of the unknown states
and unknown disturbance term is done by an extended state observer. The finite-time stability is obtained for the
observer system as well.

Figure 2: Performance evaluation of the assistant system (37) in 1-dimention as ḣ = −khhµ + δh with kh = 2.5, µ = 0.5 (red color), and µ = 1.0
(blue color), in which δh is a disturbance function (green color), and its value is equal to 1 during time interval [5 6] s.
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3.2. Finite-time robust fractional-order sliding mode-based tracking controller design
In this section, using the estimation results in the previous section, the estimated velocity states, x̂, and the dis-

turbance function, d̂(x, t), and based on the fractional calculus and a sliding-mode technique, a robust centralized
controller is designed.

To take away input-delay from the calculations, and to facilitate the controller design, we apply Laplace transform
to the delayed saturation function and then we use a Padé approximation technique as

L [sat (τ(t − td))] = e−tdςL [sat (τ(t))] ≈
1 −

tdς
2

1 +
tdς
2

L [sat (τ(t))] , (32)

where ς ∈ C is the Laplace complex variable and L[·] is the Laplace transform operator. Equation (32) can be
rewritten in terms of Laplace transform of a new state v(t) ∈ R2m as

1 −
tdς
2

1 +
tdς
2

L [sat (τ(t))] = L [v(t)] − L [sat (τ(t))] , (33)

where
L [v(t)] =

4
2 + tdς

L [sat (τ(t))] . (34)

The equivalent of (34) in the time domain is

v̇(t) = −ξv(t) + 2ξsat (τ(t)) , (35)

where ξ = 2/td. On the other hand, from (32) and (33), one can write

sat (τ(t − td)) = v(t) − [τ(t) + ∆τ(t)] , (36)

where ∆τ(t) = sat (τ(t)) − τ(t).
Now, let us introduce the following auxiliary system to deal with actuators saturation

ḣ = −Khhµ + G∆τ(t), (37)

where h ∈ R2n is the state vector, Kh ∈ R2n×2n is a positive definite matrix, and 0 < µ < 1. System (37) has finite-time
convergence property. The behaviour of one of its states during the specified time is illustrated in Fig. 2. Also, the
performance of the auxiliary system (37), with µ = 0.5, is compared with the same type of function with exponential
convergence, µ = 1, in terms of convergence rate and disturbance rejection properties. In this test, we assume that
a disturbance with amplitude 1 affects the dynamics of the assistant system (37) within the time range

[
5 6

]
s, as

also evident from Fig. 2. It is observed that the proposed system performs better than the exponential type in terms of
disturbance rejection and convergence rate.

Applying the inverse coordinate transformation (21) to the observer system (23), and considering the two auxiliary
systems (35) and (37), and also (36), the following set of systems is obtained which are employed within the controller
design procedure 

˙̂x = Ω∇H(x̂) + Gv(t) −G [τ(t) + ∆τ(t)] + d̂(x, t) − T Lo1 ỹσ − T Lo2 tanh (ỹ/ρ) ,
v̇(t) = −ξv(t) + 2ξ [τ(t) + ∆τ(t)] ,
ḣ = −Khhµ + G∆τ(t),

(38)

where T =
[
I2n O2n×2n

]
.

Define the state tracking error as

e = x̂ − xd − h +
Gv(t)
ξ

, (39)
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where xd ∈ R2n is the desired trajectory vector. The proposed fractional-order sliding surface is then given by

s(t) = Dα−1e + Dα−2(Ks1 e + Ks2 eζ), (40)

where Ks1 ∈ R2n×2n and Ks2 ∈ R2n×2n are positive definite sliding surface gains, and 0 < ζ < 1. The convergence
behavior of the tracking error for different values of α, Ks1 = Ks2 = 1.5, ζ = 0.75, and for the case that the system is
in the sliding mode, s(t) = 0, is exhibited in Fig. 3. It is obvious that, for α = 0.5, an excellent convergence behaviour
is observed and for α > 2 the behaviour of tracking error goes to the unstable mode.

Figure 3: The convergence behavior of tracking errors for for different values of α, Ks1 = Ks2 = 1.5, and ζ = 0.75.

When the controller puts the system into sliding mode (i.e., s(t) = 0), from the sliding dynamics ṡ(t) = 0, the
following result can be extracted

Dαe = −Dα−1(Ks1 e + Ks2 eζ). (41)

Theorem 3. Consider the sliding surface (40). The sliding dynamics (41) is stable and its error states converge to
equilibrium e(t) = 0 in finite time.

Proof. Choose the following Lyapunov function candidate

Vs(e(t)) =
(
eT Υse

)β
, (42)

where Υs ∈ R2n×2n. Taking its time derivative and using (41) yields

V̇s(e) = 2β
(
eT Υse

)β−1
eT Υsė

= 2β
(
eT Υse

)β−1
eT ΥsD1−αDαe

= −2β
(
eT Υse

)β−1
eT ΥsKs1 e − 2β

(
eT Υse

)β−1
eT ΥsKs2 eζ

≤ −2βλmin(Ks1 )
(
eT Υse

)β
− 2βλmin(Ks2 )

(
eT Υse

)β−1
eT Υseζ

= −2β

λmin(Ks1 )Vs(e) + λmin(Ks2 )Vs

β + ζ − 1
β (e)

 .
(43)

Since 0 <
(
β + ζ − 1

β

)
< 1, the finite-time stability is concluded from Lemma1 and the reaching time can be calculated

using (12) and (13).
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Notice that the time derivative of s(t) in (40) is

ṡ(t) = D1s(t) = Dα−1
[
ė + (Ks1 e + Ks2 eζ)

]
. (44)

In the following theorem, the structure of the proposed controller and the stability results of the closed-loop sys-
tem (38) are provided.

Theorem 4. Consider a set of dynamical systems including the estimated dynamics of a mechanical system in the
pH form and two auxiliary systems to cope with input delay and actuators saturation as given in (38). The following
fractional-order sliding mode controller

τ(t) = −G†
(
Ω∇H(x̂) + d̂(x, t) − T Lo1 ỹσ − T Lo2 tanh (ỹ/ρ) − ẋd + Khhµ +

Ġv(t)
ξ

+ (Ks1 e + Ks2 eζ)

+ D1−α [
Ks3 s + Ks4 sη

] )
,

(45)

where the † symbol stands for the pseudo-inverse operation, Ks3 ∈ R2n×2n and Ks4 ∈ R2n×2n are two positive definite
matrices, and 0 < η < 1, guarantees the finite time stability of the closed-loop system.

Proof. Taking the time derivative of (39) and considering the sliding dynamic (44) give

ṡ(t) = Dα−1
[

˙̂x − ẋd − ḣ +
Ġv(t)
ξ

+
Gv̇(t)
ξ

+ (Ks1 e + Ks2 eζ)
]
. (46)

Substituting the dynamics of x̂, h, and v(t) from (38) into (46) yields

ṡ(t) = Dα−1
[
Ω∇H(x̂) + Gv(t) −G [τ(t) + ∆τ(t)] + d̂(x, t) − T Lo1 ỹσ − T Lo2 tanh (ỹ/ρ) − ẋd + Khhµ

−G∆τ(t) +
Ġv(t)
ξ
−Gv(t) + 2G [τ(t) + ∆τ(t)] + (Ks1 e + Ks2 eζ)

]
.

(47)

Replacing the controller (45) into (47) gives

ṡ(t) = −Ks3 s − Ks4 sη. (48)

Now, let us choose the Lyapunov function equal to the energy of closed-loop system as

Vc(s(t)) = Hc(s(t)) =
(
sT Υcs

)β
, (49)

where Υc ∈ R2n×2n. Finally, taking the time derivative of (49) along the sliding dynamics (48) gives

V̇c(t) = 2β
(
sT Υcs

)β−1
sT Υc ṡ

= −2β
(
sT Υcs

)β−1
sT ΥcKs3 s − 2β

(
sT Υcs

)β−1
sT ΥcKs4 sη

≤ −2βλmin(Ks3 )
(
sT Υcs

)β
− 2βλmin(Ks4 )

(
sT Υcs

)β−1
sT Υcsη

= −2β

λmin(Ks3 )Vc(s) + λmin(Ks4 )Vc

β + η − 1
β (s)

 .
(50)

Since 0 <
(
β + η − 1

β

)
< 1, the finite-time stability of the closed-loop system is achieved from Lemma1.

Remark 6. Using fractional calculus in sliding surface (40) and a central controller (45) provides better flexibility to
shape the trajectory tracking response. Compared with the integer-order sliding mode-based robust control technique
in [49], the fractional-order sliding mode control scheme proposed in this paper has some superiority in a fast position
and velocity tracking performance and high control accuracy.

11



3.3. Extension to the case of unknown input delay

In this section, the results obtained within Section 3.1 and Section 3.2 are extended to those pH systems with
unknown time delay.

For unknown time delay, (36) can be rewritten as

sat (τz(t − td)) = vu(t) − sat(τz(t)), (51)

where vu ∈ R4m is the output of the following linear system

v̇u(t) = −kuvu(t) + fu, (52)

where ku ∈ R is a positive scalar, and fu = (ku − ξu)vu + 2ξsat (τz(t)) ∈ R4m is an unknown function. Considering (51)
and (52), equation (22) can be transformed tożu = Auzu + Φu(zu) + Gusat (τu(t)) + θ̄u,

yu = Luzu,
(53)

where zu =
[
zT vT

u

]T
∈ R4(n+m), Φu(zu) =

[
φT (z) 0T

4m

]T
∈ R4(n+m), Gu = diag(G, 04m×2m) ∈ R4(n+m)×4m, Lu =[

L On×4m

]
∈ Rn×4(n+m), θ̄u =

[
θ̄T f T

u

]T
∈ R4(n+m), τu =

[
τT

z τT
z

]T
∈ R4m, and Au =

(
A G

04m×4n kuI4m

)
∈ R4(n+m)×4(n+m).

For the system (53), the proposed state and disturbance observer has the following structure˙̂zu = Auẑu + Φu(ẑu) + Gusat (τu(t)) − Lo1u ỹσu − Lo2u tanh (ỹu/ρ) ,
ŷu = Luẑu,

(54)

where ẑu ∈ R4n+4m is the estimated value of zu, ŷu ∈ Rn is the estimated value of yu, ỹu = ŷu − yu ∈ Rn is the output
estimation error, and Lo1u ∈ R(4n+4m)×n and Lo2u ∈ R(4n+4m)×n are the observer gain matrices.

As described in Section 3.1, the inverse coordinate transformation can be applied to obtain the estimated values of
the system state xu, x̂u, assistant system state vu, v̂u, and unknown function fu, f̂u, as ˙̂xu = Ω∇H(x̂u) + Gv̂u1 (t) −G [τ(t) + ∆τ(t)] + d̂u(x, t) − T Lo1u ỹσu − T Lo2u tanh (ỹu/ρ) ,

˙̂vu1 (t) = −kuv̂u1 (t) + f̂u1 ,
(55)

where the subscript u stands for the unknown delay case, v̂u =
[
v̂T

u1
(t) v̂T

u2
(t)

]T
with v̂T

u1
(t), v̂T

u2
(t) ∈ R2m, and f̂u =[

f̂ T
u1

(t) f̂ T
u2

(t)
]T

with f̂ T
u1

(t), f̂ T
u2

(t) ∈ R2m.
For the unknown input delay case, the state tracking error, eu, and fractional-order sliding surface, su(t), are defined

as
eu(t) = x̂u − xd + h +

Gv̂u1 (t)
ku

, (56)

su(t) = Dα−1eu + Dα−2(Ks1 eu + Ks2 eζu), (57)

where h is the state vector of the assistant system (37). The fractional-order sliding mode controller (45) is modified
as

τ(t) = −G†
(
Ω∇H(x̂u) + d̂u(x, t) − T Lo1u ỹσu − T Lo2u tanh (ỹu/ρ) − ẋd

− Khhµ +
G f̂u1 (t)

ku
+

Ġvu1 (t)
ku

+ (Ks1 eu + Ks2 eζu) + D1−α
[
Ks3 su + Ks4 sηu

] )
,

(58)

Note that the observer (54), the fractional-order sliding surface (57), and the closed-loop system under the con-
troller (58) are finite-time stable, and the stability can be proven as explained in Theorems 2, 3, and 4.

12



3.4. Stability analysis including impacts
In subsections 3.1 and 3.2, the general form for the time derivatives of the Lyapunov functions (27), (42), and (49)

were obtained as in (12). Assume that the kth impact occurs at time t = tk. Let t ∈ [tk, tk+1). Integrating (12) from tk to
t yieds

V1−c(t) ≤V1−c(tk)e−a(1−c)(t−tk) −
b
a

[1 − e−a(1−c)(t−tk)]. (59)

For stability analysis, taking into account the hybrid nature of the system due to impacts, the relation between the
Lyapunov function before, V−tk , and after, V+

tk , the impact times should be extracted. Having in mind Remark 3 and
considering (31), (43), and (50), the matrices Υo, Υs, and Υc are selected as

Υok (l1, l1) ≤ %

1
β
o Υok−1 (l1, l1),

Υsk (l2, l2) ≤ %

1
β
s Υsk−1 (l2, l2),

Υck (l2, l2) ≤ %

1
β
c Υck−1 (l2, l2),

(60)

where Υok , Υsk , and Υck are the values of Υo, Υs, and Υc at t = tk, while %o, %s, %c > 1, l1 = 1, . . . , 4n, and l2 = 1, . . . , 2n.
Conditions (60) ensure the decreasing property for three matrices Υo, Υs, and Υc. Through these choices, the following
result for Vo, Vs and Vc can be obtained 

Vo(tk+) ≤ %oVo(tk−),
Vs(tk+) ≤ %sVs(tk−),
Vc(tk+) ≤ %cVc(tk−).

(61)

Therefore, one can write
V(tk+) ≤ %V(tk−). (62)

Combining (59) and (62) yields

V1−c(t) ≤ %V1−c(tk−)e−a(1−c)(t−tk) −
b
a

[1 − e−a(1−c)(t−tk)]

≤ %V1−c(tk−1)e−a(1−c)(t−tk−1) −
b
a

[1 − e−a(1−c)(t−tk−1)] −
b
a
%[1 − e−a(1−c)(t−tk−1)]

≤ ...

≤ %nσV1−c(t0)e−a(1−c)(t−t0) −
b
a

[1 − e−a(1−c)(t−tk)] − . . . −
b
a
%nσ [1 − e−a(1−c)(t−t0)]

≤ %nσV1−c(t0)e−a(1−c)nσtN −
b
a
%e−a(1−c)tN (e−a(1−c)tN − 1)

%e−a(1−c)tN
[1 − %nσe−a(1−c)nσtN ],

(63)

where tN = tk − tk−1 and nσ > 0 is the number of switching times. The bound in (63) can be rewritten as

V1−c(t) ≤ Ψ%nσe−a(1−c)nσTN − Φ, (64)

where Φ =
b
a

e−a(1−c)tN − 1
%e−a(1−c)tN − 1

and Ψ = V1−c(t0)−%Φ. If %e−a(1−c)tN −1 < 0, then the upper-bound of V(t) will be positive

V(t) ≤
[
Ψ%nσea(1−c)nσTN − Φ

] 1
1 − c = b2. (65)

This means that the stability of the closed-loop system as well as the extended observer dynamics (24) is preserved not
only during free motion phase, but also in presence of the impact. Therefore, using Definition 1, these two systems
are finite-time stable.
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Figure 4: The geometrical structure of two juggler robots with three degrees of freedom.

4. Numerical simulations

In this section, the general theoretical results obtained in the previous sections are validated on an appealing hybrid
system: the ball-playing juggler robot. Peculiarities of such a system were provided in Section 1.1.

4.1. Kinematic and dynamic of a ball-juggler robot
The geometrical structure of each juggler robot is shown in Fig. 4. The end-effector position of the first juggler

robot can be retrieved through the following geometric relationshipsxe = L1 cos(q1) + L2 cos(q1 + q2) + L3 cos(q1 + q2 + q3) + X0,

ze = L1 sin(q1) + L2 sin(q1 + q2) + L3 sin(q1 + q2 + q3),
(66)

where q1, q2, q3 ∈ R are the joint angles of the juggler robot 1. Similar expressions can be obtained for the second
juggler robot with the related joint angles q4, q5, q6 ∈ R. Using inverse-kinematic calculations [50], the values of the
joint angles for the first juggler robot can be obtained as

ϕ = atan2(
xe − X0

ze
),

xp = xe − X0 − L3 cos(ϕ),
zp = ze − L3 sin(ϕ),

c2 =
x2

p + z2
p − L1

2 − L2
2

2L1L2
,

s2 = ±
√

1 − c2
2,

q2 = atan2(s2, c2),
q1 = atan2(zp, xp) − atan2(L2s2, L1 + L2c2),
q3 = ϕ − q1 − q2.

(67)

where the two solutions identified by the + and − signs correspond to the “elbow up” and “elbow down” configura-
tions, respectively. The closest configuration to the actual one is selected. Similar expressions can be obtained for the
second juggler robot.

The dynamic equation of the juggler robots can be extracted using Euler-Lagrange method [50]. The details of the
mass and inertia matrix, the Coriolis matrix, and the vector of gravitational terms for the first juggler robot are given
in the Appendix A.
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4.2. Dynamic equations of ball motion

Three forces affect the dynamic behavior of the ball during the free-flight motion. They are namely the air re-
sistance force, Fa ∈ R3, the Magnus force, Fm ∈ R3, and the gravitational force Fg ∈ R3. It can be expressed
by [27]

mv̇b = Fa + Fm + Fg (68)

where
Fa = −

1
2
ρsaca‖vb‖vb, (69)

Fm = ρωbrbsaclvb, (70)

Fg =
[
0, 0,−mbg

]T , (71)

where ρ > 0 is the air density, ca > 0 is the drag coefficient, vb =
[
vbx vby vbz

]T
∈ R3 is the translational velocity

of the ball, ‖·‖> 0 is the Eucledian norm operator, ωb ∈ R3 is the rotational velocity of the ball, cl > 0 is the lift
coefficient, and g is the gravity acceleration. Finally, sa > 0, mb > 0, and rb > 0 are the effective contact area, the
mass, and the radius, respectively. According to [27], the motion of the ball can be represented by the following
equations



ẋb

ẏb

żb

v̇bx

v̇by

v̇bz


=



vbx

vby

vbz

−
1

2m
ρsa(ca‖vb‖−2ωbrbcl)vbx

−
1

2m
ρsa(ca‖vb‖−2ωbrbcl)vby

−
1

2m
ρsa(ca‖vb‖−2ωbrbcl)vbz − g


. (72)

where xb, yb, and zb are the position of the ball in x, y, and z directions, respectively.

Figure 5: Measured ball motion trajectory during ball-playing game by two juggler robots. Red marker O indicates the initial position of the ball.

15



Figure 6: Phase portraits of the ball states.

Figure 7: Norm of the error between desired, pbd , and measured, pbm , ball trajectories at impact times. Blue and red circles indicate the the errors
caused by the first and second juggler robots, respectively.

After an impact, the translational and rotational velocities of the ball are updated according to the following
equation [25]

v+
b = vr + RrotAvvRT

rot(v
−
b − vr) + RrotAvwRT

rotω
−
b (73)

ω+
b = RrotAwvRT

rot(v
−
b − vr) + RrotAwwRT

rotω
−
b (74)

where vr ∈ R3 is the velocity of the racket attached to the juggler robot’s end-effector at the hitting time, Rrot ∈ SO(3) is
the rotation matrix of the racket frame with respected to the world frame, Avv = diag(1− kv, 1− kv,−er), Avw = kvrS rb,
Awv = −kwrS rb, Aww = diag(1 − kwr2, 1 − kwr2, 1), and

S rb =

 0 1 0
−1 0 0
0 0 0

 .
According to [27], the values of the parameters were chosen as mb = 2.7× 10−3, er = 7.3× 10−1, kv = 6.15× 10−1,

kw = 2.57 × 103, and r = 2 × 10−2m in the carried out simulations.
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4.3. Dynamic equations of ball-juggler robotic system in pH form
Considering the structure of the juggler robots in Fig. 4, the ball dynamics in (72) and its velocity resetting

condition in (73) and (74), the state vectors x1 and x2, ∇H, G, ∆p, and Ω in (10) take the following values:

x1 =
[
pT

b qT
j1

qT
j2

]T
,

x2 =
[
mbvT

b (M1(q j1 )q̇ j1 )T (M2(q j2 )q̇ j2 )T
]T
,

∇H =
[
(∇xb Hb)T (∇q jr H jr)T (∇vb Hb)T (∇p jr H jr)T

]T
,

G =
[
O6×12 I6

]T
,

∆p =
[
(p−b )T (q−jr)

T (mbv+
b )T p+

jr

]T
,

Ω =

[
O9×9 I9
−I9 O9×9

]
,

where pb =
[
xb yb zb

]T
∈ R3 is the ball position vector, q j1 =

[
q1 q2 q3

]T
∈ R3 and q j2 =

[
q4 q5 q6

]T
∈

R3, M1(q j1 ) ∈ R3×3 and M2(q j2 ) ∈ R3×3 are the mass and inertia matrix of the first and the second juggler robots,

respectively, and Hb =
1
2

mbvT
b vb + Vb(xb) is the Hamiltonian function of the ball, in which Vb(xb) is its potential

energy. Finally, H jr ∈ R is the Hamiltonian function of the whole juggler robot system and it is defined as in (4),

q jr =
[
qT

j1
qT

j2

]T
∈ R6, and p jr =

[
pT

j1
pT

j2

]T
∈ R6 is the momentum vector of the two juggler robots. The values of

p+
jr in the impact times t = tk are calculated as explained after (10).

For the first ball-juggler robot, the impact condition is defined with respect to the state vector x1 asϑ1(x1) = xb −
[
L1 cos(q1) + L2 cos(q1 + q2) + L3 cos(q1 + q2 + q3) + X0

]
= 0,

ϑ2(x1) = zb −
[
L1 sin(q1) + L2 sin(q1 + q2) + L3 sin(q1 + q2 + q3)

]
= 0,

(75)

Note that the similar expressions can be obtained for the second juggler robot.

4.4. Analysis of the obtained results
The lengths of the links of the first juggler robot are chosen as L1 = 1 m, L2 = 0.75 m, and L3 = 0.25 m. The mass

of all three links is 1 kg, i.e. m1 = m2 = m3 = 1 kg. The gravitational acceleration, g, is 9.81 m/s2.
The designed parameters for the fractional-order sliding mode controller are experimentally tuned as α = 1.75,

ζ = 0.75, η = 5, µ = 0.5, Ks1 = 15I18, Ks2 = 5I18, Ks3 = 15I18, Ks4 = 10I18, and Kh = 2.5I18. For the extended
state observer, the assigned coefficients are Kx = 5I18, Λ = 2I18, Υo = (2.5e−0.25t + 2.5)I36, Υs = (2.5e−0.25t + 2.5)I18,
Lo1 = 25

[
I9 I9 I9 I9

]T
, Lo2 = 15

[
I9 I9 I9 I9

]T
, ρ = 0.01, and σ = 0.85.

The upper and lower saturation levels for each juggler robot are chosen as τmax =
[
15 25 25

]T
Nm and τmin =

−τmax, respectively. Input delay was set to td = 10−2 s. The renaming and resetting matrix of the juggler robots are
∆n1 = I3, ∆n2 = I3, ∆s1 = I3, and ∆s2 = I3. The lumped unknown function d(x, t) is composed of two terms: the first
term is related to the parameter uncertainties, d(x) ∈ R2n, and the second term is the external disturbance, d(t) ∈ R2n,
i.e., d(x, t) = d(x) + d(t). It is assumed that the uncertainty function of the juggler robotic system is provided from a
ten percent deviation of the nominal value of the Hamiltonian’s gradient ∇H(x) (i.e., d(x) = ±0.1∇H(x)). The external
disturbance vector affecting the dynamic of each juggler robot is selected as d(t) =

[
7.5 sin(1.5t) 0 5 cos(2t)

]T
.

The juggler robot dynamics, the proposed fractional-order controller, and the extended-state observer were imple-
mented in the MATLAB/Simulink environment and solved through the Runge–Kutta algorithm with sampling time
10−3 s. The Caputo fractional derivative is employed in this simulation. The trajectories of the ball are generated
using (72) , (73), and (74). The juggler robot uses the information of the ball trajectory to regulate the positions and
the orientations of the end-effectors [51]. Based on the end-effector positions and orientations, and using inverse-
kinematic calculations (67), the desired trajectories of the joints are produced.
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Figure 8: Desired, blue line, and measured, red dashed line, angular joint positions of the first juggler robot: (a) qd1 and qm1 , (b) qd2 and qm2 , and
(c) qd3 and qm3 .

Here, the controller objective forces the states of the juggler robots to the desired trajectories to hit the ball in
appropriate positions, which results in controlling the ball’s motion. The measured ball motion trajectory (the so-
called juggling pattern) is plotted in Fig. 5 in the x− z plane. The phase portraits of the ball states are plotted in Fig. 6.
The norm of the error between the desired, pbd , and the measured, pbm , ball trajectories at the impact times for the first
(blue circles) and the second (red circles) juggler robots is depicted in Fig. 7. It is observed that the error is a little
high at the first impact time only. As for the other impact times, the error stays around 0.01 and 0.012 m. Therefore,
the juggling pattern results in the desired repetitive action for the whole playing time.

The results of the proposed framework are displayed from Fig. 8 to Fig. 14. In detail, the time responses of the
measured and desired robot joint position trajectories are plotted in Fig. 8. The results are representative of the good
convergence of the measured joint position states to their desired trajectories. The time response of the extended state
observer is plotted in Fig. 9, showing that the proposed observer estimates the system states with good precision.
Figure 10 shows the behavior of the estimated position tracking errors using the extended-state observer. As we
expected, the position tracking errors rapidly tend to zero, indicating that the state reconstruction objective is achieved
well. The sliding variables si(t), i = 1, 2, 3 are shown in Fig. 11. Note that, to eliminate the adverse effects of the
time delays in control signals and saturation constraints, the auxiliary variables v and h were included in the definition
of the tracking error e in (39). For this reason, the sliding variables converge to a region near the origin. To further
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Figure 9: Measured, blue line, and estimated, red dashed line, angular joint positions of the first juggler robot: (a) qm1 and q̂m1 , (b) qm2 and q̂m2 ,
and (c) qm3 and q̂m3 .

illustrate the finite-time stability, the behaviour of the energy function Vs(t) is plotted in Fig. 12. It can be seen that
the energy of s(t) becomes zero before a finite-time. Fig. 13 illustrates the phase portraits between the states qi and
q̇i, i = 1, 2, 3. They show that the system responses follow the desired phase portraits. After a short time, the states
of the juggler robot follow the desired stable limit-cycles: it can be thus concluded that the repetitive juggling actions
are successfully performed. Control efforts τ1 to τ3 are plotted in Fig. 14(a)-(c). It is observed that, after a short time,
the control signals are confined inside predefined saturation limits, and without any chattering effects, the signals
demonstrate continuous behaviors.

To investigate carefully and for comparison study, the advantages of two other controllers, namely, integral sliding
mode control (ISMC) [49] and fractional-order sliding mode control (FOSMC) [52], were employed in the control of
a robotic juggler system. These controllers were proposed to stabilize the general class of uncertain Hamiltonian sys-
tems and balance a two-wheeled autonomous vehicle, respectively. It is assumed that the non-zero mean disturbances
appear in the dynamic of q̇2 within the time interval t ∈ [2, 6] s as d2(t) = 7.5 + 10 sin(5t), and in the dynamic of q̇3
within the time interval t ∈ [1, 5] s as d3(t) = 10. The results of this comparative study are shown from Fig.Fig. 15
to Fig. 17. The time responses of the angular position tracking errors and the angular velocity tracking errors are
shown in Fig. 15 and Fig. 16, respectively. Our proposed control technique has good disturbance rejection capability
and provides a superior control performance with a faster convergence rate and higher tracking accuracy. Note that,
although the tracking performances of ISMC and FOSMC might be improved by increasing their control gains, this
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Figure 10: Angular position tracking errors of the first juggler robot.

Figure 11: The behaviour of sliding variables.

will inevitably result in increasing the amplitude and chattering of the control efforts and more energy consumption
of the system. The control signals are plotted in Fig. 17(a)-(c). The ISMC and FOSMC provide larger control efforts
having chattering phenomenons along with impact effects in impact times, which saturation limiters should confine
them. Therefore, the necessity of using an actuator limiter is sensible in this example. As shown in these plots, our
control approach provides a smooth control signal without the chattering effect. Therefore, it seems that the proposed
design is more suitable for real implementation.

To further evaluate the performance of the proposed control scheme another case study is carried out. The max-
imum saturation limits of the actuators are now set to τmax =

[
10 20 20

]T
, while the input delay is increased to

td = 2.5 × 10−2 s. Then, the control energy (CE) factor of each actuator and the root-mean-square (RMS) tracking
errors of the joins are calculated. RMS and CE indicate the tracking error performance and the amount of the control
effort, which is proportional to the energy consumption of the juggler robot, respectively. CE for ith actuator is defined
as CEi =

∫ t f

0 τ2
i (t) dt, where t f is the final time of the simulation. In Table 1, the results of applying controller (45)

with and without using auxiliary system’s states (35) and (37) in controller structure are given as Case A and Case B,
respectively. These comparative results show that the joints’ tracking performances are reduced in Case B, while the
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Figure 12: Energy Vs(t).

Figure 13: Phase portraits of the desired, blue line, and measured, red line, states of the first juggler robot.

Table 1: Root mean square (RMS) values and control energy (CE) factors for three joints of the first juggler robot. Case A: under controller (45),
and Case B: under controller (45) and without using auxiliary system’s states (35) and (37) in controller structure.

Controller Joint i RMS (rad) CE (Nm)2

Case A
Joint 1 0.0143 68.1013
Joint 2 0.0435 196.3930
Joint 3 0.0783 375.7741

Case B
Joint 1 0.0253 98.0337
Joint 2 0.0784 286.8629
Joint 3 0.1336 523.2351

system’s energy consumption is increased.
Therefore, our theoretical predictions are validated as the effectiveness of the proposed control scheme.

5. Conclusion

In this paper, an observer-based robust tracking controller design for impulsive hybrid mechanical systems with
input delay and actuator saturation has been investigated. A state augmented technique has been employed to deal
with the lumped disturbance function, while two novel compensation systems were put forwarded to handle input
delays and actuator constraints. A centralized robust fractional-order sliding mode controller was designed using
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Figure 14: Control efforts of the joints of the first juggler robot: (a) τ1, (b) τ2, and (c) τ3.

these auxiliary systems’ states and the extended-state observer’s estimation results. It has been proved that the joint
position/velocity tracking errors and the observer tracking errors converge to the origin in a finite-time. The efficiency
of the proposed theoretical methods was evaluated on a ball-playing juggler robot.

Future studies will be focused on a robust adaptive controller design for hybrid pH systems with unknown time
delays in system states, unknown control direction, and under practical constraints on system states and control signal.
The theoretical results will then be implemented on real robotic systems such as biped robots and ball juggler robots.

Appendix A

The details of three matrices M1, C1, and g01 for the first juggler robot are as follows:

M1 =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 , C1 =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 , and g01 =

g011

g012

g013

 , where

M11 =
1
3

m1L2
1 +

1
3

m2(3L2
1 + 3L1L2c2 + L2

2) +
1
3

m3(3L2
1 + 6L1L2c2 + 3L1L3c23 + 3L2

2 + 3L2L3c3 + L2
3),

M12 =
1
6

m3(6L2
2 + 6L2L3c3 + 6L1L2c2 + 2L2

3 + 3L1L3c23) +
1
6

m2L2(2L2 + 3L1c2),
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Figure 15: Angular position tracking errors with the proposed controller (black lines), integral sliding mode control [49] (red lines), and fractional-
order sliding mode control [52] (blue lines): (a) position tracking error of joint 1, (b) position tracking error of joint 2, and (c) position tracking
error of joint 3.

M13 =
1
6

m3L3(2L3 + 3L1c23 + 3L2c3),
M21 = M12,

M22 =
1
3

m3(3L2
2 + 3L2L3c3 + L2

3) +
1
3

m2L2
2,

M23 =
1
6

m3L3(2L3 + 3L2c3),
M31 = M13,
M32 = M23,

M33 =
1
3

m3L2
3,

C11 = −
(1
2

m3L1(L3s23 + 2L2s2) +
1
2

m2L1L2s2

)
q̇2 −

1
2

m3L3(L1s23 + L2s3)q̇3,

C12 = −
(1
2

m3L1(L3s23+2L2s2)+
1
2

m2L1L2s2

)
q̇1−

(1
2

m3L1(L3s23+2L2s2)+
1
2

m2L1L2s2

)
q̇2−

1
2

m3L3(L1s23+L2s3)q̇3,

C13 = −
1
2

m3L3(L1s23 + L2s3)q̇3 −
1
2

m3L3(L1s23 + L2s3)q̇1 −
1
2

m3L3(L1s23 + L2s3)q̇2,
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Figure 16: Angular velocity tracking errors with the proposed controller (black lines), integral sliding mode control [49] (red lines), and fractional-
order sliding mode control [52] (blue lines): (a) velocity tracking error of joint 1, (b) velocity tracking error of joint 2, and (c) velocity tracking
error of joint 3.

C21 =
(1
2

m3L1(L3s23 + 2L2s2) +
1
2

m2L1L2s2

)
q̇1 −

1
2

m3L2L3s3q̇3,

C22 = −
1
2

m3L2L3s3q̇3,

C23 = −
1
2

m3L2L3s3

(
q̇1 + q̇2 + q̇3

)
,

C31 =
1
2

m3L3(L1s23 + L2s3)q̇1 +
1
2

m3L2L3s3q̇2,

C32 =
1
2

m3L2L3s3

(
q̇1 + q̇2

)
,

C33 = 0,

g011 = gm3(L1c1 + L3c123 + L2c12) + gm2(L1c1 + L2c12) −
1
2

gm2L2c12 +
1
2

gm1L1c1 −
1
2

gm3L3c123,

g012 =
1
2

gm2L2c12 + gm3

(1
2

L3c123 + L2c12

)
,
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Figure 17: Control efforts with the proposed controller (black lines), integral sliding mode control [49] (red lines), and fractional-order sliding
mode control [52] (blue lines): (a) τ1, (b) τ2, and (c) τ3.

g013 =
1
2

gm3L3c123,
where c1 = cos(q1), c2 = cos(q2), c3 = cos(q3), s2 = sin(q2), s3 = sin(q3), c12 = cos(q1 + q2), c23 = cos(q2 + q3),

c123 = cos(q1 + q2 + q3), and s23 = sin(q2 + q3).
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