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Abstract: Quadruped robots have garnered significant attention in recent years due to their ability
to navigate through challenging terrains. Among the various environments, agriculture fields are
particularly difficult for legged robots, given the variability of soil types and conditions. To address
this issue, this study proposes a novel navigation strategy that utilizes ground reaction forces to
calculate online artificial potential fields, which are then applied to the robot’s feet to avoid low-
traversability regions. The strategy also incorporates the net vector of the attractive potential field
towards the goal and the repulsive field to avoid slippery regions, which dynamically adjusts the
quadruped’s gait. A realistic simulation environment validates the proposed navigation framework
with case studies on randomly generated terrains. A comprehensive comparison with baseline
navigation methods is conducted to assess the effectiveness of the proposed approach.

Keywords: motion control; potential fields; quadruped navigation

1. Introduction

With the ability to adjust their footstep and overcome obstacles, legged robots are
well-suited to tasks that must be performed in challenging terrains, such as industrial plant
inspection, search and rescue, precision agriculture [1], and similar. Recently, research has
emphasized the development of agile gaits, enhancing the capacity to maintain steadiness
during motion to replicate living beings’ natural movement. Although there have been
considerable advancements in motion planning and control techniques, legged robots are
still incapable of dealing with all the challenges posed by unstructured environments and
unknown terrains. For this reason, it becomes essential for them to ensure stability and
adjust their foothold as per the unevenness and ruggedness of the ground.

While much progress has been made navigating non-flat terrains [2,3], ensuring stable
and effective walking in rough and slippery areas is still challenging for legged systems.
As an additional complexity, terrain features that characterize the roughness and density
of the walking surface are difficult to identify by exploiting vision-based information that
can be misleading or not detailed enough. The main aim of this work is to make an online
estimate of the so-called traversability of the terrain that the legged system is trampling,
calculating the best direction to overcome low-traversability regions and, at the same time,
reach a target position. The traversability index can generally be considered a metric
describing the robot’s ease of navigating a terrain. It can refer to the ability of a robot to
navigate through a particular environment or surface. This includes the ability to overcome
obstacles and challenges such as slopes, stairs, uneven surfaces, and other impediments.
Path planner algorithms can use terrain traversability metrics to ensure effective navigation.
Nevertheless, the estimation of this metric relies on exteroceptive sensors such as LIDARs,
depth cameras, cameras, and so on. Because of this, it does not provide information about
the collapsibility of the terrain, but only a semantic classification of its type, while field
robots must be able to navigate over pitfalls covered with leaves, plants on soft soil and
water puddles.
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In this work, we propose an approach in which a quadruped robot can perform a
traversability analysis during navigation, similar to how living beings push their feet into
the ground to evaluate if they can safely walk over a given region. To replicate the natural
behaviour of living beings, an online potential field is computed at each footstep. In this
way, the robot tries to reach a given (pre-planned) goal (attractive potential) while, at the
same time, it tries to avoid low-traversability regions (repulsive potential). The combination
of the attractive and repulsive forces, adequately tuned, drives the legged robot during the
navigation. Each foot’s stability is evaluated during the stance phase to provide information
about the terrain. The stability is measured by considering the distance of the vertical
component of the ground reaction forces from the friction cone boundaries. This acts as
a robustness index, indicating the likelihood of feet sliding and causing an imbalance.
The integral of each foot’s robustness index during the stance phase, also known as the
average robustness, is used to compute a repulsive potential field. This field pushes the
robot away from the position of less stable feet and towards more stable ones. In addition,
the resultant repulsive potential field is used to switch the gait type. Indeed, different
gaits can be performed during quadruped locomotion, realising more or less dynamic
movements. Usually, if the robot moves only one leg at a time, the performed gait is called
crawl. This is an intrinsically stable form of walking, since three legs are always standing.
Instead, highly dynamic movements can be performed whenever two legs are moving
contemporarily: trot gait, when diagonal pairs of legs move together; pace gait, with lateral
pairs of legs moving contemporarily; and gallop gait, when either the front legs or the
rear ones swing simultaneously. In this paper, the nominal performed gait will be the
trot, since it is the one that best conjugates a more stable movement with the capability
to reach highly dynamic and fast locomotion. However, there could be the chance that,
in complex situations, all the feet fall in a low-stability condition, and the repulsive field is
insufficient to find a direction that brings the robot far from the low-traversability region.
In this case, when the robustness index of the four feet starts to decrease under a certain
threshold, the gait is switched to a more stable one (i.e., the crawl one) to traverse this
region while increasing the overall stability.

To summarise, the provided contributions against state-of-the-art approaches are
(i) an estimation of the traversability of the terrain trampled by the robot during the
navigation. This estimation is performed for each foot of the quadruped robot to analyse
the terrain comprehensively; (ii) implementation of a navigation function based on the
traversability analysis to adapt the executed path online to reach a given target traversing a
safe path.

To assess the effectiveness of the proposed approach, a set of simulation test cases have
been carried out in the Gazebo dynamic simulator, considering environments populated
with regions with different slipperiness. In all the tests, a pre-defined goal point has been
selected and the capacity to avoid low-traversability regions has been determined, along
with an estimation of the stability of the legged system during the locomotion.

The remainder of the paper is organised as follows. Section 2 presents a brief overview
of the state of the art of similar applications. In Section 3, the dynamic model of a quadruped
robot is presented, while in Section 4, the deployed system architecture is detailed along
with a discussion of the proposed approach from a theoretical and practical point of view.
Finally, in Section 5, a set of case studies is discussed to demonstrate the effectiveness of
the proposed approach.

2. Related Works

Quadruped robots have become increasingly prevalent in various fields, ranging from
laboratory research [4–6] to practical industrial applications [7]. Despite their diverse
applications, legged robots face the common challenge of maintaining stability during
locomotion on unstructured, rugged, and complex terrains. A typical control approach
to enable the navigation of quadruped robots is to consider the control in the operational
space. This is a popular method that considers the entire dynamics of a robot. This
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method entails imposing desired motion for pertinent points such as the centre of mass or
reference points for the feet [2,8,9]. Improving the performance of low-level controllers and
ensuring stable robot locomotion can be achieved by finding the best path and footholds
during navigation. In this field, various techniques have been proposed. For instance,
in [10], an online force-based foothold adaptation mechanism is presented to update the
planned motion based on the perceived state of the environment. In [11], a heightmap
is created and utilised by a D∗ planner algorithm to generate path regions that are easy
to navigate. Such regions are known as high-traversability regions and represent those
parts of the terrain that can be easily traversed. Traversability analysis (See [12]) typically
uses vision, LIDARs, or depth sensors. This process calculates the ability of a terrain to be
traversed; it has been studied in different research works and emerged as a widely adopted
method with which to evaluate diverse environments. It comprehensively evaluates
various terrain features such as slope and roughness and combines them into a single
metric [11,13]. Depending on the environmental features to identify, different approaches
can be employed. In [14], the authors proposed a LIDAR-based approach for semantic
terrain classification. Based on this classification, a probabilistic traversability map is
generated. Similarly, in [13], a hierarchical traversability analysis where point cloud-based
step segmentation and geometric slope–roughness metrics are unified into one cost map,
while semantic information, geometry information, and robot mobility are fused in [15] to
provide an estimation of the traversability. Moreover, identifying outdoor terrains with
only visual information, such as soft soil or deep water, remains challenging. For this
reason, in our work, the robot can estimate the traversability of the region of terrain that is
trampled by using the ground reaction forces.

The authors in [15] utilised a quadruped robot equipped with a probing arm to
evaluate the traversability metric of the terrain. They executed this by using the force
sensor integrated at the end of the probing arm to push on the terrain. The methodology
applied in their work resembles our approach of verifying the terrain consistency using
contact. However, our approach distinguishes itself from theirs because it does not need a
probing arm and computes the traversability at every step.

In this work, information about the traversability of the terrain is used in a navigation
function implemented in the artificial potential field (APF). APF in robotics founds its
foundation in [16]. Since then, this technique has been extensively leveraged to resolve
the path planning problem for various industrial manipulators and mobile robots [17–19].
With its intuitive physical implications and modelling, coupled with its simplicity, ro-
bustness, and real-time performance, the APF approach has become a well-researched
and highly utilized tool in robotics. Potential fields continue to offer the most suitable
solution for mobile robot navigation in cluttered environments. In this navigation context,
the robot’s target point acts as an attractive force, while obstacles around the robot act as
repulsive forces [20]. Researchers have explored different approaches to making this field
model more effective so that the robot can exhibit a range of behaviours during navigation.
For instance, in [21], a combined potential field model with five components (like target,
land, back, car, and speed potentials) is proposed. Additionally, in [22,23], researchers have
developed an application for aerial and industrial robots that enables human operators
to change the robot’s trajectory while maintaining attractive forces towards a destination
point and a pre-planned path. The repulsive force in the proposed approach is directly gen-
erated by the traversability of the terrain, which dynamically changes during navigation.
In this way, executing the most efficient path becomes easier, paving the way for optimal
navigation [13,24].

3. Dynamic Model
3.1. Model Formulation

A legged robot can be assimilated to a free-floating base with some limbs attached to it.
The base can be modelled using six virtual joints, providing the system with six unactuated
degrees of freedom (DoFs) with respect to a fixed world frameW (see Figure 1). These
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DoFs represent the pose of the robot base, while each leg provides the system with other
n > 0 joints. Then, if nl ≥ 2 legs are attached to the floating base, the robot has a total of
nnl + 6 DoFs.

Figure 1. DogBot, the platform used for simulations. The reference frames for the robot are shown.
Ground reaction forces (in blue) need to stay in the cones (in green).

Either a point fixed on the base or the centre of mass (CoM) of the robot can be
considered to represent the position of the system [25]. In the following explanation,
the centroidal dynamics of a legged robot will be presented, considering the position of the
system coinciding with the position of the CoM. With this purpose, let B be the frame whose
position is attached to the robot’s CoM (see Figure 1), with xcom =

[
xc yc zc

]T ∈ R3,
ẋcom ∈ R3, and ẍcom ∈ R3 the position, velocity, and acceleration of the CoM with respect
to W , respectively. The orientation of the frame B can be considered the one of a fixed
frame on the main body, expressed with respect toW by the rotation matrix Rb ∈ SO(3),
from which the set of ZYX Euler angles φ ∈ R3 can be extracted. Moreover, let ωcom ∈ R3

and ω̇com ∈ R3 be the angular velocity and the angular acceleration of B with respect toW ,
respectively. Finally, indicate with q ∈ Rnnl the vector collecting the legs’ joints.

Considering the assumptions that the main body’s angular motion is slow and that
the legs’ mass is negligible with respect to the robot’s total mass, the centroidal dynamic
model of a legged robot assumes a decoupled structure, as introduced in [26]. The inertia

matrix assumes the structure M(q) =

[
Mcom(q) O6×nnl
Onnl×6 Mq(q)

]
∈ R6+nnl×6+nnl . In this way,

the decoupling of the centroidal term Mcom(q) ∈ R6×6 is clearly distinguished from the
one related to the legs Mq(q) ∈ Rnnl×nnl . As a consequence of the previously introduced
assumptions, the Coriolis and centrifugal terms related to the angular part of the CoM
can be neglected [2,25]. Thus, the vector accounting for Coriolis, centrifugal and grav-

itational forces is h(q, υ) =

[
O6×(6+nnl)

Cq(q, υ)

]
υ +

[
mg
0nnl

]
, with Cq(q, υ) ∈ Rnnl×(6+nnl), where

υ =
[
ẋT

com ωT
com q̇T]T ∈ R6+nnl is the stacked velocity; m > 0 is the total mass of the

robot, g =
[
gT

0 0T
3
]T ∈ R6, and g0 ∈ R3 the gravity vector; 0× and O× the zero vector and

matrix of proper dimensions, respectively. The resultant model can be written as

M(q)υ̇ + h(q, υ) = STτ + Jst(q)T fgr, (1)

with S =
[
Onnl×6 Innl

]
∈ Rnnl×(6+nnl) a selection matrix; τ ∈ Rnnl the joint actuation

torques; fgr ∈ R3nst are the ground reaction forces, with 0 < nst ≤ nl the number of
stance legs; Jst(q) =

[
Jst,com(q) Jst,j(q)

]
∈ R3nst×6+nnl where Jst,com(q) ∈ R3nst×6 and

Jst,j(q) ∈ R3nst×nnl are those Jacobians whose transpositions map the ground reaction forces
into the acceleration of the CoM and the legs’ joints, respectively. Further details about the
above matrices’ expressions can be found in [25,27,28]. It can be noticed that the dynamics
of the CoM are decoupled from the ones of the legs, so that the CoM’s dynamics, also called
centroidal dynamics, are included in the first six rows of Equation (1).
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3.2. Friction Cone

When analysing the design of a legged robot, it is crucial to prioritise the interaction
between the machine and the ground to achieve effective locomotion and balance. The con-
tact with the terrain provides valuable feedback regarding the robot’s current stability
and balance, which is particularly significant when executing complicated gaits requiring
high dynamism.

The interaction is primarily influenced by the friction coefficient between the ground
and the robot’s feet. This is because the Coulomb’s friction model dictates that each of the
robot’s feet has two distinct behaviours during the stance phase of contact [29], namely:

• Fixed contact if the ground reaction force fgr,i is contained within the boundaries of
the relative friction cone;

• Sliding contact if the ground reaction force fgr,i is not contained within the boundaries
of the relative friction cone.

Each foot in contact with the ground generates a friction cone that starts from the point
of contact, as illustrated in Figure 1. The size of the friction cone depends on the friction
coefficient µ. Specifically, let ~ni denote the unit normal to the ground at the i-th contact
point. The friction cone associated with this foot is aligned along~ni. Additionally, let~ti,1
and~ti,2 represent two tangential vectors at the i-th contact point. The friction cone manifold
can be defined as follows [30]

FCi =

{
fgr,i ∈ R3 :

√
( fgr,i~ti,1)2 + ( fgr,i~ti,2)2 ≤ µ fgr,i~ni, fgr,i~ni ≥ 0

}
, (2)

where the boundary of the manifold δFCi represents the boundary of the friction cone.
If fgr,i falls outside this boundary, the foot starts sliding. Having this in mind, it becomes
apparent that the friction coefficient µ plays a crucial role in determining the stability of
the robot. A higher coefficient enlarges the friction cone manifold, reducing the likelihood
of sliding.

However, if the robot does start to slide on the ground, the system’s balance can
no longer be considered stable. If the feet begin to lose traction, there is a significant
chance that the quadruped will struggle to maintain balance, eventually leading to a
fall. To accurately measure the robot’s ability to resist sliding and determine its overall
robustness during movement, consideration can be given to the distance of the ground
reaction forces from the boundary of the friction cone manifold δFCi. This can be achieved
by calculating the angle between the normal i-th contact and the corresponding contact
force using αi = arccos

(
~nT

i fgr,i/|| fgr,i||
)
. The semi-aperture angle of the i-th friction cone,

denoted as θi = arctan µ, is also considered. By combining these factors, the boundary of
the i-th friction cone manifold can be expressed as [6,31]

δFCi =
{

fgr,i ∈ R3 : |αi| = θi

}
. (3)

It can be deduced that the distance between the i-th ground reaction force vector and
the cone boundary can be expressed as the distance of αi from θi. Based on these findings,
a metric used to assess the robustness of the i-th foot at the instant t during the locomotion
can be formulated as

Ri(t) = θi − |αi(t)|. (4)

In this study, the robustness index will be utilised as a part of an APF to determine the
repulsive force, which will steer the robot away from areas with low friction coefficients
where slipping may occur. The aim is to guide the robot towards regions with a higher
friction coefficient and robustness index for enhanced stability and effectiveness.
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4. System Architecture

The proposed control framework has been implemented using the system architecture
presented in Figure 2. Herein, the legged robot is simulated using Gazebo simulator
software (version 11.1), a realistic physical simulator in robotics. The virtual platform
comprises a 12-DoF robot with four legs, where effort motor controllers are emulated.
The whole-body controller module [2,32] computes the 12 torque values, τ, to control the
platform. The simulator output comprises various data, such as the estimation of the centre
of mass position, pcom, its velocity, ṗcom, and the position and velocity of the robot joints,
q ∈ R12 and q̇ ∈ R12, respectively. The whole-body controller module leverages these data
to calculate the control input at each time step, and this module comprises a motion planner
and an optimization problem.

Figure 2. The scheme is representing the system architecture.

Figure 2 illustrates that the foot scheduler determines the order and timing of each
foot’s movement. In the context of quadruped robot locomotion, a step can be defined as
having two phases: the stance phase, when all feet are in contact with the ground; and the
swing phase, when some feet are moving [2,32]. During each step, the foot scheduler
schedules the timing of these phases. After the conclusion of each step, the motion planner
within the whole-body controller calculates trajectories for both the feet and the CoM of
the robot for the next step. To accomplish this, the motion planner uses the scheduling
generated by the foot scheduler and the desired foot positions for the next step, which the
APF module determines.

The platform boasts four force sensors for each foot which generate a ground reaction
force when in contact with the ground during the stance phase, denoted by fgr ∈ R3nst .
The Average Robustness Indices module employs these data to compute each foot’s average
robustness indices (r1,...,4). Additionally, the module calculates the metrics for all four
feet, enabling the selection of a desired gait type based on a tuned threshold for average
robustness indices. Specifically, if the mean among all foot indices is lower than the given
threshold, the system will choose a safer gait type. In this study, the robot alternates
between trot and crawl. This last, being a more precautionary gait type, ensures that the
robot maintains its stability on slippery surfaces.

The APF module uses the average robustness indices along with a target point,
pcom,des ∈ R3, to generate the attractive and repulsive potential fields. Based on the
resultant field, the desired position of each foot at the end of the next step is calculated
(p fi

, with i = 1, . . . , 4 ). The whole-body controller module uses the feet position to calculate
the new position of the body, pushing the robot toward the force field. Indeed, the desired
position of the feet is passed to the whole-body controller, together with the system output
from the simulator. Starting from these data, the motion planner within the whole-body
controller computes a trajectory for both the feet and the CoM for the next step. There-
fore, this trajectory is used as input for the optimization problem to compute the robot’s
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commands while respecting constraints related to dynamic consistency, mechanical safety,
and non-slippage conditions. For detailed information about the whole-body controller
module, see [2,32].

4.1. Feet Potential Field

The potential field approach is frequently employed in robot motion planning to
achieve a specific goal while also adhering to safety directives, e.g., avoiding obstacles
or navigating hazardous areas. To create a trajectory for the robot to follow, the potential
function is determined by adding up two potentials:

• The attractive potential: a potential field that pushes the robot towards the goal;
• The repulsive potential: a repulsive field that pushes the robot away from obstacles or

other dangerous regions.

This approach is commonly used in mobile robotics to enable the robot to continuously
plan its motion in real time while relying on partial information about its environment.
Typically, a mobile robot position is represented by a single fixed point on its base, and this
point is moved as per the computed potential field. However, only considering a fixed
control point attached to the robot base fails to serve the purpose of this research, which
aims to devise a navigation algorithm that accounts for the robot’s balance stability during
motion. To accomplish this objective, it is crucial to consider a potential field around each
robot’s foot. As outlined in Section 3.2, one of the most critical aspects in achieving balance
stability in a legged robot relates to the friction cone of each contact point. Therefore,
the previously defined robustness index can be a helpful indicator of the traversability
of the region currently being traversed by the robot. Based on the value of this index for
each foot, a safer direction of movement can be computed to steer away from the most
slippery terrain, drawing inspiration from the natural behaviour of animals. These animals
rely on sensing the softness or sliding of the terrain while pushing their feet and use this
information to determine their next steps [33,34]. This approach is a novel way to ensure
stability in the navigation of the robot. Hence, the approach adopted in this study involves
the computation of a potential field for each robot’s foot. This field is designed to impart
directional forces that enhance the stability of individual legs on the ground. This, in turn,
improves the robot’s overall ability to maintain balance effectively.

When dealing with a quadruped robot and its stance phase stability, a crucial factor to
consider is establishing a sound and reliable nominal stable configuration. This configu-
ration can be seen as the robot’s ultimate goal, which it should strive to achieve once the
desired position has been attained. In essence, it is the key to ensuring optimal stability
throughout the robot’s operations. Let us consider the position of the CoM on the x-y plane
(see Figure 3), denoted as pxy,com =

[
xc yc

]T ∈ R2. In a nominal configuration, the posi-
tions of the four feet on the same plane can be expressed as p f ,i∗ = pxy,com + δp f ,i ∈ R2,
where i denotes the corresponding foot. To achieve a stable configuration, the desired
position for each foot can be computed as p f ,i,des = xcom,des + δp f ,i ∈ R2 when the robot
reaches its desired goal at xcom,des. The potential field for each foot is composed of two
terms, namely:

• The attractive potential bringing the i-th foot towards the goal p f ,i,des;
• The repulsive field that exploits the robustness index of the foot.

The attractive force can be computed considering a paraboloidic potential [35]. Con-
sider the error from the desired position of the i-th foot as

e f ,i = p f ,i − p f ,i,des. (5)

Then the attractive force of the foot can be computed as

fa,i = kae f ,i, (6)
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where ka ∈ R is an attractive gain.
To accurately calculate the repulsive field for each foot, it is crucial to determine the

appropriate direction in which the field must be directed. To achieve this, it is necessary
to push the entire robot structure away from areas with a higher degree of slipperiness.
The four-unit vectors depicted in Figure 3, which extend from each foot to the CoM, must
therefore be considered. The i-th unit vector can be written as

~dcom, fi
=

p f ,i − pxy,com

‖p f ,i − pxy,com‖
. (7)

These unit vectors represent the direction the individual foot must move to be pushed
away from its current position, if necessary. Let us consider the robustness index of the
i-th foot at instant t, denoted as Ri(t). The repulsive force acting on this foot can be
expressed as:

fr,i(t) =
1
Ri(t)

~dcom, fi
, (8)

meaning that the force applied must be inversely proportional to the index. For instance,
if the foot is robust, it ought to be repulsed less while, if the foot is less robust, it should be
pushed more from its current position.

Figure 3. Repulsive unit vectors for the four feet of the quadruped.

A sequential movement of the robot trajectory is illustrated in Figure 4. Upon in-
spection, it is evident that the final direction of the robot is primarily determined by the
resultant force acting on the CoM of the repulsive and attractive fields. In a scenario where
the robustness of all feet is the same (i.e., the friction coefficient is identical), the repulsive
force acting on the CoM is nullified, and the robot only follows the attractive potential,
heading towards the goal. However, if one foot is less robust than the others, the resultant
force will impact the entire structure, leading it towards the direction of the repulsive fields
while still tracking the attractive potential.

Figure 4. Sequential movement of the robot trajectory to avoid a low traversability region, using the
proposed approach. In red, the repulsive forces; in green, the attractive ones. Blue arrows indicate
the resultant direction of the robot.
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Consider the scenario depicted in Figure 4. At the start, the front left foot encounters a
surface with a lower friction coefficient than the other feet, leading to a decrease in stability
and an increase in the magnitude of its repulsive force. Consequently, the robot follows the
direction indicated by the blue arrow, pushing the robot away from the slippery region and
towards safer and more traversable areas. It is worth noting that as the robot continues
its trajectory, the repulsive fields of all four feet become equal, allowing it to track the
attractive field.

The potential field calculation takes place at the conclusion of each step phase, just
before the next motion planning stage. Consequently, the robustness computed at this point
can be viewed as an average value for the period between two successive steps. Assuming
a fixed step duration of ∆t, at instant t, the average robustness over the interval from the
beginning of the current step to t can be determined through the following expression:

R̄i(t) = ∆t−1
∫ t

t−∆t
Ri(σ) dσ. (9)

This refers to the average robustness of the step phase. In other words, it is the
robustness of the foot at the point where it is pushing. During the next trajectory planning,
the repulsive field will guide the robot away from any slippery zones in its current stance.
However, it is essential to note that if the average robustness only accounts for the current
foot position, the trajectory planning may not consider the slipperiness of the previous foot
positions. This increases the risk of the robot returning to a slippery region from which
it had just navigated away due to an attractive potential. Hence, it is imperative to take
into account the previous robustness values, which serve as an indicator of the slipperiness
of the surrounding terrain. To mitigate this concern, an exponentially weighted moving
average approach has been adopted [36,37]. This methodology relies on a procedure that
mainly considers the most recent measurements, while older observations gradually lose
their significance with time. The principle behind this approach is to compute a weighted
average of all the past observations and use it to calculate the current average value R̂i(t).
The mathematical expression for this estimation is presented below [36]

R̂i(t) = β
(
R̄i(t) + γR̄i(t− ∆t) + γ2R̄i(t− 2∆t) + γ3R̄i(t− 3∆t) + γ4R̄i(t− 4∆t) + . . .

)
, (10)

where 0 < β < 1 and γ = 1− β. By using this approach, we can ensure that the furthest
points do not impact the current repulsive field. On the other hand, the closest points
significantly impact the current robustness index, with the weight assigned based on the
time of the footstep. The older the instant at which the footsteps are positioned, the less
influence it has on the current robustness, thereby enhancing the stability of the robot.
In order to simplify the computations, we can modify Equation (10) as follows [36]

R̂i(t) = βR̄i(t) + (1− β)R̂i(t− ∆t). (11)

In order to use Equation (11), the repulsive force in Equation (8) can be modified as

fr,i(t) =
1
R̂i(t)

~dcom, fi
. (12)

The total potential force acting on the i−th foot is the sum of the attractive and
repulsive ones

fp,i = fa,i + fr.i. (13)

From the potential force obtained for the next step, having assumed a fixed step
duration of ∆t, the i-th foot position can be computed as

p f ,i = p f ,i + ∆t fp,i. (14)
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4.2. Exit From Local Minima

In some situations, the robot could be trapped into local minima without being able to
achieve the goal [35,38]. The proposed potential field approach may lead to an unforeseen
situation if only two feet belonging to the same side of the robot (i.e., front, rear, left or
right side) are standing on a slippery surface. In this case, the robot will be pushed in the
opposite direction exiting from the slippery zone, but then the attractive potential field will
push it again into the dangerous zone. Two indices can determine when the robot is in such
a situation. These indices are derived from the combination of robustness indices computed
for the feet. These include R̂ f 1 for the front right foot, R̂ f 2 for the front left foot, R̂ f 3 for
the rear right foot, and R̂ f 4 for the rear left foot. The combined indices can be expressed as

R̂comb1 = |R̂ f 1 − R̂ f 2|+ |R̂ f 3 − R̂ f 4|, (15)

which represents the difference between the indices of the two front feet added to the
difference between the indices of the two rear feet. The second considered index is

R̂comb2 = |R̂ f 1 − R̂ f 3|+ |R̂ f 2 − R̂ f 4|, (16)

representing the difference between the indices of the two right feet added to the difference
between the indices of the two left feet. Consider a small value ε that represents the maxi-
mum difference in foot indices required for them to be considered in the same slipperiness
region. Three situations can be identified, namely:

• R̂comb1 < 2ε and R̂comb2 < 2ε, then all the feet are situated within a single slipperiness
region;

• R̂comb1 > 2ε and R̂comb2 < 2ε, then the left legs of the robot will be in an area with
different levels of slipperiness compared to the right legs. This can result in the
robot being stuck in a local minimum. If the right legs are in a more slippery region,
the robot will be pushed to the left and then back to the right, remaining trapped
in this repetitive movement. The applied strategy to overcome this situation is to
move the feet either forward or backward (randomly chosen) until they are in the
same region;

• R̂comb1 < 2ε and R̂comb2 > 2ε. This indicates that the front legs of the robot are situated
in an area with a different level of slipperiness compared to the rear legs. In such a
scenario, the robot becomes stuck in a local minimum. When the front legs are placed
in a slipperier region, the robot tends to move backwards before moving forward
again, creating a cycle. To overcome this situation, the employed exit strategy is to
move the robot towards the right or left side (randomly chosen) until all its feet are in
the same region. Afterwards, the robot can move forward without being trapped.

5. Case Study

To evaluate the efficacy of the proposed methodology, simulations were conducted us-
ing Gazebo dynamic simulator and ROS noetic as the robotic programming framework [39].
The high-performance physics engine employed by Gazebo enabled the simulation of
realistic robot movements and external conditions. This study utilised the DogBot model
from React Robotics (see Figure 1), an open-source platform, as the quadruped for the
simulations. Ground reaction forces were determined by integrating force sensors into
the robot’s feet. All simulations were performed on a standard PC running Ubuntu Linux
20.04. Four case studies were conducted, comprising two distinct types of testing. The first
three cases were conducted to determine the effectiveness of the repulsive field as the
robot traversed areas with differing friction coefficients, while the fourth case studied the
dynamic gait change.
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For each case study, a proper simulation scene has been set up. The robot must traverse
zones with varying friction coefficients throughout the navigation process. The normal
floor is assigned a friction coefficient of µ = 1. Conversely, three different areas have been
included, with friction coefficients µ of 0.8, 0.5, and 0.2, respectively. Each area has been
marked with different colours in the simulation scenes for easy identification. Notably,
the navigation challenge increases with a decrease in the coefficient index, meaning that
areas with smaller coefficient indices pose more significant navigation difficulties for the
robot. Since the actual µ coefficient of the area traversed during the navigation is unknown
by the robotic system, a nominal µ = 0.5 has been considered for the computation of the
robustness index. The source code and the simulation environments used to perform the
following simulations are accessible at this link: https://github.com/prisma-lab/APF_
quadruped (accessed on 12 June 2023).

5.1. Case Study 1

The effectiveness of the repulsive field in enhancing the average robustness index of
each foot was evaluated in this case study. As shown in Figure 5, a simulation scene was
configured with the robot’s objective: traversing a straight path and reaching its target
point. The robot initiated the test from the position

[
0 0

]T and aimed to reach the goal

at
[
0 −12

]T . Three areas with different friction coefficients were placed along the path
to simulate the slippery regions. These areas included a green area with µ = 0.8, a blue
area with µ = 0.5, and a red area with a µ = 0.2, all within 1 m radius circles. The test
was then conducted twice, with and without activating the repulsive field. Results related
to the test case are reported in Figure 6 when the repulsive field is enabled and Figure 7
when it is not. The monitored variables were the distance between the robot’s body and the
three areas, the average robustness for each foot, and the distance to the target. Comparing
the two figures, using repulsive forces can increase the overall average robustness index,
the meaningful parameter demonstrating the robot’s stability. It could be observed that
although the repulsive field causes the robot to deviate from the original path to remain
in a region with a higher traversability, the overall duration of the trajectory is not highly
affected. Figures 6a and 7a show that employing the repulsive field guarantees the robot
will consistently remain within the circle’s boundaries. This behaviour arises due to the
potential field’s ability to deflect the trajectory whenever the robot’s feet make contact
with the slippery surface. Consequently, the robot traverses a more stable region while
maintaining proximity to the shorter path. To assess the improvements of our method over
classical potential fields, we repeated the test 20 times with and without the repulsive field
and monitored the mean value of the average robustness indices of all the feet. The mean
values and standard deviation are reported in Table 1.

Figure 5. Case study 1. Three circle areas are included in the scene with the following friction
coefficients: 0.8 for the green circle, 0.5 for the blue circle, and 0.2 for the red circle. The ground
floor has 1.0 as the friction coefficient. A video showing the different case studies can be seen at this
link: https://youtu.be/iUhhvo_zKuU (accessed on 12 June 2023).

https://github.com/prisma-lab/APF_quadruped
https://github.com/prisma-lab/APF_quadruped
https://youtu.be/iUhhvo_zKuU
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Table 1. Mean value and standard deviation for the average robustness index with and without the
repulsive field.

Test Mode Average Robustness Index Standard Deviation

Repulsive field ON 0.49 0.05
Repulsive field OFF 0.2 0.03
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Figure 6. Results obtained for Case Study 1 enabling the repulsive field: (a) Distances from the centre
of the three low-traversability areas; (b) robustness indices; (c) distance from the goal.
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Figure 7. Results obtained for Case Study 1 without the repulsive field: (a) Distances from the centre
of the three low-traversability areas; (b) Robustness indices; (c) Distance from the goal.

5.2. Case Study 2

The objective of the second case study is to evaluate the proposed control framework
by selecting the area with the highest traversability, even when traversing slippery surfaces.
Unlike the first case study, the quadruped is confined to walking in an area with a lower
friction coefficient than the floor. The simulation environment is illustrated in Figure 8a,
which includes three slippery surfaces. The robot’s goal is

[
2 −9

]T , whereas its starting
position is the origin. Therefore, a diagonal linear path is necessary to reach the destination,
forcing the robot to move to the right red area. The results from this test case are presented
in Figure 9. The distance between the quadruped body and the two red areas is depicted in
Figure 9a. In the beginning, the robot is repelled from the right red region (the red dashed
line in Figure 9a), and it remains on the blue surface, maintaining a constant distance from
the left red area until the quadruped overcomes it (vertical black dashed line in Figure 9a).
This behaviour is also evident in the robustness indices in Figure 9a. It is essential to note



Robotics 2023, 12, 86 14 of 20

that deactivating the repulsive field for the same test is not feasible, as the quadruped
platform topples due to the terrain’s high slipperiness.

Figure 8. Simulated environments: (a) Case study 2; (b) Case study 3; (c) Case study 4. Two areas are
included in the scenes with the following friction coefficients: 0.5 for the blue region, and 0.2 for the
red one. The ground floor has 1.0 as the friction coefficient.
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Figure 9. Results obtained for Case Study 2: (a) Distances from two low-traversability areas;
(b) robustness indices; (c) distance from the goal.
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5.3. Case Study 3

The goal of Case study 3 is to test the robot’s behaviour in the presence of local minima.
The related simulation scene is reported in Figure 8b. As already stated (see Section 4.2),
in the proposed approach, a local minima problem can occur when the two feet towards
the direction of the attractive source trample at the same time a low-traversability area.
This situation could create a neverending loop that causes the robot to get stuck. Then,
this case study presents one of the cases of local minima considered, and the results are
reported in Figures 10 and 11. In detail, setting the goal at

[
0 −12

]T and looking at the
scene in Figure 8b, it can be supposed that the robot will move forward, and at a certain
point, both front feet will be placed on the slippery region. Therefore, the repulsive forces
will push the robot back and forth in the blue region, trapping the robot. This behaviour is
demonstrated by the plots in Figure 11, in which the system has been tested deactivating
the local minima exit strategy. In particular, Figure 11a reports the distances from the goal
and the centre of the blue area. It can be noticed that these distances remain constant during
the test. The robot can overcome this difficulty once the exit strategy is applied. This can be
seen in Figure 10, where the distances from the goal and the blue region and the robustness
indices are reported. Initially, the distance from the centre of the blue area remains constant
for a while, and the indices start to be lower than in the case of the standard floor (µ = 1).
This indicates that the exit strategy is being applied, and the robot is being pushed towards
a random side direction while walking around the perimeter of the blue area. Finally, it can
be affirmed that the robot exits from the local minimum condition when the distances from
the goal and the centre of the slippery region start decreasing and increasing, respectively
(vertical black dashed line in Figure 10a). In the meantime, the robustness indices increase.
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Front Left Foot
Rear Right Foot
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Figure 10. Results obtained for Case Study 3 applying exit strategy from local minima: (a) Distance
from the target (red) and centre point of low-traversability area (blue); (b) robustness indices.
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Figure 11. Results obtained for Case Study 3 without applying exit strategy from local minima:
(a) Distance from the target (red) and centre point of low-traversability area (blue); (b) robustness indices.

5.4. Case Study 4

Case study 4 has been set up to test the gait change during the motion when the robot
is trampling a low-traversability area with all its feet. The motivation behind this study
is that whenever the exit strategy from local minima cannot bring the robot outside from
the low-traversability region in a specific finite time, the robot should be forced to traverse
this region to reach the goal. This means that the robot will find itself with all four feet
on a slippery region. In this case, the indices of all the feet will decrease contemporarily
under a certain threshold, and the robot is commanded to switch to a different gait type,
such as the crawl (intrinsically stable), allowing the robot to traverse the whole region
safely. Figure 8c reports the related simulation scene. The goal is

[
0 −12

]T . In Figure 12,
the results are reported. The robustness indices of the four feet can be seen in Figure 12a,
while in Figure 12b, a flag representing the commanded type of gait is plotted. The flag
is 1 when the trot command is implemented and 0 when it is switched to the crawl. It
can be noticed that the gait switches when the robustness indices are all under a certain
threshold that, in this work, is set as r̄ = 0.35. It should also be specified that a crawling
gait is usually associated with a slower velocity, which guarantees more balance. This can
be seen in Figure 12d, where the robot’s velocity is reported. Indeed, when the gait flag is 0,
the velocity is lower; it starts increasing again when it switches to trot and decreasing again
only when it approaches the final goal. This is also confirmed by Figure 12c, representing
the distance from the target.
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Figure 12. Results obtained for Case Study 4: (a) Robustness indices; (b) gait flag, 1 is for trot, 0 is for
crawl; (c) distance from the target; (d) velocity of the robot.
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6. Conclusions and Future Work

This work presents a novel approach to using artificial potential field techniques
to drive the motion of a legged robot (i.e., a quadruped robot). The main novelty is
calculating a repulsive force field based on the information of the ground reaction forces
received from the quadruped during the navigation. These forces are adequately associated
with an attractive force field to accomplish navigation tasks. The generated repulsive
field allows for avoidance, when possible, of the navigation over low-traversability areas,
preventing the robot from slipping on the ground and, consequently, achieving safer
navigation. Starting from the ground reaction forces, the average robustness indices are
used to calculate the repulsive forces for each foot of the robot. Finally, when the robot is
constrained to walk over a low-traversability region, the mean of the average robustness
indices is used to modulate the gait type, switching from a classic trot gait type to a more
conservative one (i.e., the crawl). The proposed approach has been extensively tested in a
realistic dynamic robotic simulator software: Gazebo, exploiting ROS as a programming
framework, and the obtained results demonstrated the effectiveness of the navigation
approach. Future directions of this work regard the possibility of adding obstacles in the
repulsive field generation and deploying the proposed system on a real robotic platform to
carry out tests in real-world environments.
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