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Smoothed particle
hydrodynamics-based viscous
deformable object modelling

Jung-Tae Kim, Fabio Ruggiero, Vincenzo Lippiello, Bruno Siciliano

Abstract Materials like fluids are long since important research objects of
continuum mechanics as well as of computer graphics. Smoothed particle
hydrodynamics(SPH) is one of the representation methods employed for con-
tinuous materials. Its simplicity in implementation and its realistic repre-
sentation are drastically improved during the last decades. More recently,
highly viscous fluids like honey, jam, and bread dough based on the SPH
formulation have gained attention with impressive results. In this chapter, a
novel implicit viscosity method is proposed. The internal viscosity forces are
recursively calculated from the di↵erence of the nearby velocities of the parti-
cles until they are small enough to be neglected. The proposed approach has
longer time-steps compared with existing explicit viscosity methods, resulting
in shorter computation time. Besides, the proposed method uses a physical
viscosity coe�cient, not an artificial one like in existing implicit viscosity
methods, which helps predict the viscous behavior of continuous materials
more accurately. The obtained results show that the computational time for
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Table 3.1: Main symbols used in this chapter.

Definition Symbol

Material or substantial derivative
D

Dt
Fluid density ⇢ > 0
Space dimension r = {2, 3}
Flow vector velocity field v 2 Rr

Hydrostatic pressure p > 0
Viscous stress T 2 Rr⇥r

Body force due to gravity, surface tension, or fric-
tion

fbody 2 Rr

i-th fluid sample point xi 2 Rr

Dynamic viscosity coe�cient µ > 0
Neighbourhood of the i-the particle Ni

Mass of the i-th particle mi > 0
Reynold number Re > 0

the proposed approach is predictable, while the accuracy in modelling the
viscosity behaviour is similar or higher than existing methods.

3.1 Brief introduction

Continuous materials (e.g., solid objects, fluids) were widely and deeply in-
vestigated a long time after Augustin-Louis Cauchy firstly formulated them
in the 19-th century. Various methods for modelling continuous materials
are categorized as Lagrangian versus Eulerian approach, mesh-based versus
mesh-free approach, or a hybrid combination. Below, a list of well-established
methods is revised.

The finite di↵erence method(FDM) is an Eulerian grid method construct-
ing regular grids [57], while the finite volume method(FVM) generates sub-
domains referred to as cells [90]. The finite element method(FEM) is instead a
grid method requiring mesh generation for their particle elements [140, 351].
Within the GSMs, gradient smoothing operations based on relevant gradi-
ent smoothing domains are employed to approximate derivatives [174]. The
SPH consists of Lagrangian particles carrying the convection properties like
mass, pressure, and velocity [176, 205]. Among the hybrid methods, it is
worth mentioning the FLIP approach [39, 63], which is represented with La-
grangian particles while the projection step is performed on an Eulerian grid,
and the MPM [299, 300], which handles collision and fracture of Lagrangian
particles with the use of an Eulerian grid. The PBFM [185] applies geomet-
ric constraints of the PBDM [211] to enforcing constant density in the SPH
framework. The integration of the PIC approach [124] and the FLIP one
was proposed in [350] for animating granular materials such as the sand. The
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combination of the SPH’s incompressibility solver with the position-based ve-
locity correction for volume preservation of viscoelastic fluids was presented
in [306].

Each of the methods listed above has its benefits and issues compared to
the others. Recently, thanks to the drastically increasing computation power
of computers and the development of novel algorithms, the mesh-free La-
grangian modelling methods, like the SPH, are becoming more practical [176].
The intuitive and straightforward formulation of the SPH approach is suitable
to describe highly deformable objects with complex surfaces. For this reason,
such a method fits well the continuous material handled by this chapter.

The SPH method was firstly designed in [108, 181, 206] for analyzing astro-
physical problems. Naturally, it emphasizes convection properties like mass
rather than geometric volume conservation, precisely the benefits and draw-
backs of a Lagrangian approach compared to an Eulerian approach. While
SPH methods were applied to highly dense continuous materials like wa-
ter, addressing the incompressibility of the materials would be a significant
improvement. The first SPH method to simulate less compressible continu-
ous materials, the so-called XSPH variant for matter di↵usion, was proposed
in [203, 204, 205] by including an artificial viscosity approach, the equation of
state, and boundary conditions. Another contribution in applying the SPH
method to incompressible materials can be found in [79]. An SPH technique
based on a projection method to model incompressible flows was proposed
in [72] by projecting a velocity onto a divergence-free subspace using pressure
correction. An ISPH approach, in which the incompressibility of the material
is satisfied through a pressure Poisson’s equation, was proposed in [279]. A
WCSPH method was proposed in [21] by using Tait’s equation, resulting in
fast computation and less density fluctuation. The success of the PCISPH
method proposed in [292, 293] raised the popularity of implicit methods over
explicit ones. The IISPH method in [136] computes density deviation not
based on the position but based on the velocity, resulting in a robust time-
integration scheme. The DFSPH approach computes impulse force to main-
tain the initial constant density and the divergence-free velocity field [22].

This chapter deals with highly viscous continuous materials like honey,
jam, and bread dough. Based on the SPH formulation, several viscosity meth-
ods exist modelling incompressible behaviour of continuous materials. A con-
ventional SPH method to model the incompressible flows with a low Reynolds
number was proposed in [208]. A double density relaxation procedure to en-
force incompressibility and particle anti-clustering was used in [59]. The work
in [50] integrated the pressure force and the viscosity force in [209] with an
additional elastic force derived from a modification of Hooke’s law.

The Cross’ model [69] for variable viscosity under shear stress in non-
Newtonian fluids was employed in [279]. Later, a similar approach was used
in [5, 6], resulting in accurate modelling of viscous jet buckling. An implicit
viscosity integration method was presented in [307]: it was good at gener-
ating rotational viscous fluid behaviours like coiling or buckling with long
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time-steps. At the same time, a di↵erent implicit viscosity formulation was
proposed in [241]. An impulse force-based implicit viscosity method, which is
a similar approach to a previous incompressibility solver [22], was introduced
in [23]. The DC-PBD solver proposed in [15] handles both position-based and
velocity-based constraints e�ciently so that large-scaled and highly viscous
fluids are animated with high speed. A further implicit viscosity solver, which
is controllable by physical viscosity coe�cients, was proposed in [336]. Be-
sides these SPH-based methods, other approaches model continuous viscous
materials as well. Namely, a variant of the MAC algorithm was proposed
in [48] to simulate wax, while an implicit Eulerian method for simulating
free-surface viscous fluids was proposed in [19].

Recently, the vorticity di↵usion of continuous material related to the tur-
bulence or the eddy near solid boundaries in high Reynolds number flows
has gained attention within the research community. For instance, the im-
plicit viscosity formulation in [241] was improved in [240] to include vorticity
di↵usion. The DVH was proposed in [261] to generate a highly accurate vor-
ticity field in the 2D space. However, this chapter deals with high viscous
fluids with a related flow characterized by a low Reynolds number and a slow
velocity. Therefore, the vorticity di↵usion is not addressed here.

The method introduced in this chapter takes inspiration from the implicit
viscosity method addressed in [23, 241, 307]. Hence, the proposed method
has long time-steps as the other implicit viscosity methods do, resulting in
a shorter computation time to simulate the continuous material. In addi-
tion, the following novelties are introduced by this chapter: (i) the proposed
method uses a physical viscosity coe�cient, instead of an artificial one as
commonly done in the literature, and thus it is possible to predict the vis-
cous behaviour of the continuous materials accurately; (ii) while most of the
existing implicit viscosity methods use optimization methods (e.g., conjugate
gradient or precomputed Jacobian to find the proper velocities of the parti-
cles), the proposed approach can control the viscosity accuracy and predict
the computation time, as it will be verified in the proposed experiments.

The outline of the chapter is as follows. The mathematical background for
Navier-Stokes equations used to represent the continuous materials and the
SPH formulation, which is a mesh-free Lagrangian method implementing the
Navier-Stokes equations, are briefly revised in the next section. The proposed
approach is presented in Section 3.3 along with a brief description of existing
viscosity approaches. At the same time, Section 3.4 gives additional ways
to improve the introduced SPH implementation to be more accurate and
fast in simulating the continuous materials. Experiments are described in
Section 3.5 where the performance of the proposed algorithm is competitive
with the conventional methods. Conclusions are provided within Section 3.6.
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3.2 Theoretical background about Navier-Stokes’s
theorem and SPH

The basic concept of Navier-Stokes equations is briefly introduced in this
section. The SPH method is revised in a nutshell as well .

3.2.1 Navier-Stokes’ theorem for continuous materials

The two equations regarding the conservation of mass and momentum for
continuous materials are considered [56, 251, 309]. The former is also known
as the mass continuity equation

D⇢

Dt
= �⇢r · v. (3.1)

The latter equation is about the momentum conservation

⇢
Dv

Dt
= �r · pIr +r ·T+ ⇢ f body. (3.2)

For any material property Ai of the fluid sample point xi with proper
dimension, in the Eulerian approach, the material derivative is defined as
DA
Dt

= @A
@t

+ (v · r)A, in which @

@t
is the time derivative at a fixed Eule-

rian sample point xi and (v · r)A is the so-called advection term. In the

Lagrangian approach , he material derivative is defined as DA
Dt

= dA
dt

, in

which d

dt
is the time derivative at an advected Lagrangian sample point xi

[137, 151].

3.2.2 SPH formulation

As briefly mentioned in Section 3.1, the SPH formulation is a mesh-free La-
grangian approach initially developed for astrophysical problems in [108, 181].
They treated the stars distributed sparsely in the universe as particles with
mass and other properties, and they researched about interval physical prop-
erties among neighbour stars. Lately, the SPH formulation was applied to
compressible fluid problems in continuum mechanics, in which each particle
represents a collection of nearby atoms or molecules.

According to the general SPH formulation [151, 205, 203], a physical quan-
tity A of any point x 2 Rr of the continuous material can be calculated by

A(x) =

Z 1

�1
A(x0)W (x� x0, h) dx0, (3.3)
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where W : Rr ! R�0 is an interpolating kernel, and h is the radius of the
kernel domain. The value for the outer of the kernel domain is zero. Such a
kernel satisfies the following two properties

Z 1

�1
W (x� x0, h) dx0 = 1, lim

h!0
W (x� x0, h) = �(x� x0), (3.4)

where � : Rn ! R�0 is the Dirac delta function, whose output is equal to
zero everywhere except for x = x0, and whose integral over the domain is
equal to one. Moreover, decreasing monotonically with distance may be an
additional useful property for a kernel function W .

The discrete approximation of (3.3) is given by

Ai =
X

j

mj

⇢j
Aj W (xi � xj , h), (3.5)

where mj > 0 and ⇢j > 0 are the mass and the density of the j-neighbour
particle, respectively. The gradient rA for equation (3.5) can be defined
using the second golden rule of SPH, which is to rewrite formulae with the
density placed inside operators [111, 203, 241], as

rAi =
1

⇢i

X

j

mj(Aj �Ai)rW (xi � xj , h). (3.6)

Similarly, the Laplacian r2A for equation (3.5) can be defined as

r2Ai =
X

j

mj

⇢j
(Aj �Ai)r2W (xi � xj , h), (3.7)

as proposed in [61, 209] by applying the second golden rule of SPH twice for
incompressible continuous materials.

From now in this chapter, Wij will be used as short notation for W (xi �
xj , h).

3.3 Viscosity property and various viscosity methods for
SPH

The Navier-Stokes equation (3.2) for incompressible fluids with a Lagrangian
approach can be written as follows for the i-th element

Dvi

D t
= � 1

⇢i
r · pi Ir +

1

⇢i
r ·Ti + f body

i
, (3.8)
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where it is possible to recognize the net motion force, f motion

i
= Dv

D t
, equal to

the sum of the pressure force, f pressure

i
= � 1

⇢i
r · p Ir, occurred by pressure

di↵erence, the viscosity force, f vis = 1
⇢i
r ·Ti, occurred by shear stress, and

the body force, f body
i

, acting on a continuous fluid and given by gravity, in-
ertial accelerations, elastostatic accelerations, and so on. Incompressibility of
continuous materials is guaranteed by solvers like IISPH [136] or DFSPH [22],
which generates the proper pressure force f pressure

i
to keep constant the den-

sity, that is, ⇢i = ⇢0, or at least D ⇢i

D t
= 0. The SPH is purely based on

Lagrangian approach, hence the material derivative for a velocity vi is cal-

culated as Dvi

Dt
= dvi

d t
[137].

Concerning incompressible fluids, the viscosity force f vis is defined as

f vis

i
=

1

⇢i
r ·Ti =

1

⇢i
r ·

✓
2µ
rvi +rvT

i

2

◆

=
1

⇢i

✓
µr ·rvi| {z }
r2vi

+µr · (rvi)
T

| {z }
r(r·vi)=0

◆
=

1

⇢i
µr2vi,

(3.9)

where r2vi is the Laplacian of the velocity.
Regarding the SPH formulation, a double discretization of the velocity

generates error accumulation, and it is prone to be too much sensitive with
respect to the velocity of the particles and the kernel function. Hence, the
conventional explicit viscosity methods [204, 208, 279] use alternative for-
mulations by employing the first derivative kernel function only, while the
existing implicit viscosity methods [23, 241, 307] try not to calculate the vis-
cosity force explicitly. The formulation proposed in [209] is employed in this
chapter to define the viscosity force f vis

i
as

f vis

i
=

1

⇢i
µr2vi =

1

⇢i
µ
X

j

mj

⇢j
(vj � vi)r2Wij . (3.10)

The goal of most of the viscosity methods is to find out the velocity vi

satisfying the Navier-Stokes equation (3.8). However, it is not easy to find out
such a velocity because the viscosity force f vis

i
is relative to both the velocity

of a particle and the velocities of its neighbours, as evident from (3.10).
To easy explain the presented methodology, all the particles in the con-

tinuous material are assumed to be initially stable, i.e., vi = v0 8i where
v0 2 Rr is a constant velocity, for instance zero. Let f ext

i
= ai 2 Rr be

any other force applied to the i-th particle, assimilated to an acceleration a,
except its viscosity force f vis

i
. Then, consider that only a particle i of the

continuous material is subject to an external force f ext

i
, while the other par-

ticles are not f ext

j 6=i
= 0r. When the i-th particle is accelerated by the external

force f ext

i
, its closest particles drag it to be less accelerated. Such a dragging

force is equal to the viscosity force f vis

i
for the i-th particle as
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f vis

i
=

X

j

f vis

i j
, (3.11)

where i j means the e↵ect of a particle j toward a particle i. Therefore,
folding equation (3.10) into equation (3.8), with the assumption vi = v0 8k,
yields

�vi

�t
' 1

⇢i
µ
X

j

mj

⇢j
(vj�(vi+�vi))r2Wij+ai = �

1

⇢i
µ�vi

X

j

mj

⇢j
r2Wij+ai,

(3.12)
where the equality holds if the change of velocity, �v, is constant during a
given time-step �t > 0. Then, the increase of velocity for the particle i, �vi,
caused by the external force f ext

i
can be obtained from

�vi ' (�t · ai)/(1 +�t · µ
⇢i

X

j

mj

⇢j
r2Wij). (3.13)

Moreover, the viscosity force occurred by a neighbourhood particle j can be

retrieved from f vis

i j
= � 1

⇢i
µ�vi

mj

⇢j
r2Wij . According to the third Newton’s

law,mif vis

i j
+mjf vis

j i
= 0r, the dragging force from a particle j to the particle

i also a↵ects the particle j itself such that

f vis

j i
=

1

⇢j
µ
mi

⇢i
((vi +�vi)� vj)r2Wij . (3.14)

Then, the force f vis

j i
can be regarded as a new external force f ext

0

j
2 Rr for

the particle j, that is, f ext
0

j
= f vis

j i
.

The described procedure is resumed within the schematic diagram in
Fig. 3.1. Assume that five particles exist, each of which is denoted with sub-
script j1, j2, j3, j4, and i, serially and stably placed in a row. The particle i is
a↵ected by four neighbourhood particles j1, j2, j3, and j4 in the SPH formu-
lation. The particle i is subject to a given external force f ext

i
vertically applied

in the upward direction. Since the surrounding particles are still stable, the
initial viscosity force is given by f vis

i
=

P
j
f vis

i j
, where j = {j1, j2, j3, j4}.

Then, the summation of the provided external force f ext

i
and the viscosity

force f vis

i
is the net motion force f motion

i
of the i-th particle. Subsequently,

the change of velocity �vi caused by the motion force f motion

i
creates the

viscosity forces, f vis

j1 i
, f vis

j2 i
, f vis

j3 i
, and f vis

j4 i
. Each of these viscosity forces

can be regarded as new external forces, f ext
0

j1 , f ext
0

j2 , f ext
0

j3 , and f ext
0

j4 , for the
neighbourhood particles.

Now, consider the case where multiple particles in a continuous material
are subject to external forces f ext

j 6=i
, simultaneously. Following the previous

equations (3.13)-(3.14), a particle i might be subject to multiple viscosity
forces

P
j
f vis

i j
from its neighbourhoods, so that the new external force f ext

0

i
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(a)

(b)

Fig. 3.1: When an external force f ext

i
is applied on the i-th particle of a

series of particles arranged in a row, not only the i-th one gets the viscosity
force f vis

i
but also the particles j1 ⇠ j4 are subject to new external forces

f ext
0

j1 ⇠ f ext
0

j4 according to Newton’s third law. Red, yellow, and black arrows
indicate external, viscosity, and net motion forces, respectively.

can be extended to

f ext
0

i
=

X

j

f vis

i j
=

1

⇢i
µ
X

j

mj

⇢j

⇣
(vj +�vj)� (vi)

⌘
r2Wij

=
1

⇢i
µ
X

j

mj

⇢j
(�vj)r2Wij .

(3.15)
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Furthermore, removing the assumption that vi = v0 8i yields

�vi

�t
' 1

⇢i
µ
X

j

mj

⇢j
(vj � (vi +�vi))r2Wij + ai, (3.16)

which is equivalent to

�vi

�t
' � 1

⇢i
µ�vi

X

j

mj

⇢j
r2Wij +

⇣ 1

⇢i
µ
X

j

mj

⇢j
(vj � vi)r2Wij + ai

⌘

| {z }
f ext0
i =a0i

.

(3.17)
Note that, considering the combination of the last two terms in the right side
of the above equation as a new external force f ext

0

i
= a0

i
, then equation (3.17)

becomes equivalent to (3.12).
In view of the law of conservation of energy and the condition that the

kernel Laplacian is r2W � 0, the following expressions hold

f motion

i
= f vis

i
+ f ext

i
=

X

j

f vis

i j
+ f ext

i

) f ext

i
= f motion

i
+
X

j

f vis

j i

)
��f ext

i

�� �
X

j

��f vis

j i

�� =
X

j

���f ext
0

j

��� .

(3.18)

Therefore, the magnitude of the sum of the external forces, k
P

f extk, always
decreases and converges to zero as the procedure is iterated.

So far, a viscosity equation has been retrieved from the knowledge of an
applied external force, and such a viscosity term has been used as a further
external force as well. There is not so much di↵erence with conventional
explicit viscosity methods. However, imagine the sequential procedure with a
very short time-step �t⌧ �t in an explicit approach. The external force f ext

i

a↵ects the particle i: after �t, the particle i changes its velocity accordingly
to �vi and, subsequently, any particle j 2 Ni in the neighbours of i gets an
external force f ext

j
from i. During the next �t, the particle j subject to the

external force f ext

j
changes its velocity accordingly to �vj and, subsequently,

any particle k 2 Nj in its neighbour, including the particle i 2 Nj , gets
an additional external force f ext

k
from the particle j again. This procedure is

iterated for �t/�t times, and thus the number of interactions tends to infinite
as �t! 0.

For a Newtonian fluid, since the dynamic viscosity coe�cient µ is constant,
it is possible to separate the computation of the new external forces, f ext

0
,

from the sequential processing without increasing the time-step. In this way,
it is possible to take a longer time-step �t for viscosity calculation like other
implicit viscosity methods.
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A schematic diagram is shown in Fig. 3.2. On the one hand, Fig. 3.2-(a)
shows that the velocity changes �v are accumulated linearly during a short
time �t as in the existing explicit viscosity methods. To use these approaches,
the short time-step �t should be selected e�ciently. Furthermore, suppose
there is an SPH routine including neighbour searching and incompressible
solving for each iteration as the conventional explicit viscosity methods do.
In that case, the computation time of the SPH algorithm also drastically
increases. On the other hand, Fig. 3.2-(b) illustrates the approach proposed in
this paper, which calculates the velocity changes �v during a given time-step
�t � �t, and then the induced external force f ext

0

i
=

P
j
f vis

i j
is applied to

the surrounding particles subsequently without adding a time-step. Moreover,
the magnitude of the change of velocity k�vk decreases as the routine is
repeated: hence, the viscosity error can be controlled, as well as the number
of iterations, with a trade-o↵ between them.

The schematic pseudo-codes of both the SPH algorithm and the one related
to the proposed viscosity method are shown in Algorithm 2 and Algorithm 3,
respectively. In Algorithm 2, the properties related to the particles are ini-
tialized, like the space dimension, the fluid density, the mass of a particle,
the position x and velocity v of each particle, as well as the kernel function
with the radius of its domain h, the time-step, the total simulation time,
and so on (line 2). Then, the main routine (lines 4-9) is repeated until the
end of the given simulation time. The neighbour search for each particle is
carried out (line 4), then the kernel value W , its gradient, its Laplacian, and
its density are calculated using the distances to the neighbours (line 5). The
neighbour search and the computation of the kernel function are the most
time-consuming parts. The related calculations can be improved with various
methods like implementing a look-up table for the kernel function. The body
force f body, like gravity, is applied to each particle (line 6). There are two
main sub-routines: one for the incompressibility of the continuous material
and the other one to calculate the viscosity force. In this chapter, the conven-
tional incompressibility methods, like the IISPH approach in [241] and the
DFSPH method in [22] , are employed. They guarantee incompressibility of

the continuous materials through ⇢ = ⇢0, or at least through D ⇢

D t
= 0 (line

7). Under the assumption that a given continuous material is incompressible,
the proposed viscosity method is run (Algorithm 3). It calculates the velocity
of a particle v satisfying viscosity (line 8). Finally, the position of a particle
x is updated based on the velocity v (line 9).

In detail, Algorithm 3 consists of an initial part (line 2-6) and a loop (line
8-16). Firstly, the external force ⇢a0 is re-calculated, including not only the
original external body force, like gravity, but also the viscosity force f vis

occurred by the relative velocity between a particle i and its neighbours Ni

using the equation (3.17). Within the loop part, two termination conditions
are checked: the former to verify when the number of iterations is less than the
maximum numbermax iter ; the latter to prove that the maximum magnitude
of the accelerations of the particles kak is greater than the minimum threshold
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(a) conventional explicit approach

(b) proposed method

Fig. 3.2: While the conventional explicit approaches require a short time-step
�t for sequential calculations, on the top, the proposed method uses a given
time-step �t � �t for calculating the velocity changes and the additional
external forces, on the bottom.
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ALGORITHM 2: OUTLINE OF THE SPH ALGORITHM

1 begin
2 initialize particles of a continuous material in SPH formulation
3 repeat
4 search neighbourhood for each particle
5 compute W , rW , r2W , and ⇢ for each particle
6 apply the body force f body e.g. gravity

7 correct the density error s.t. ⇢ = ⇢0 or at least D ⇢
D t

= 0

8 apply the viscosity e↵ect on the continuous material (Algorithm 3)
9 update the position x of each particle

10 until

11 end

keeping a reasonable computation time and preventing the computation of
negligible small external forces (line 7). For these two termination conditions,
max acc and cur iter are calculated (line 5-6 and line 15-16). Within the loop,
two main parts can be recognized: the former is the update of the velocity of
each particle (line 8-11) using (3.13); the latter is the calculation of the new
external force f ext

0
= a0 using (3.15). When each external force is negligible

or the max iterations number is overcome, the viscosity method terminates.

ALGORITHM 3: PROPOSED VISCOSITY METHOD FOR INCOMPRESSIBLE
NEWTONIAN FLUIDS

1 begin
2 for each particle i of a continuous material in SPH formulation do
3 a0

i = ai +
µ
⇢i

P
j

mj

⇢j
(vj � vi)r2Wij - - - Eq. (3.17)

4 end

5 max acc = max{
��a0

1

�� , · · · ,
��a0

N

��}
6 cur iter = 0
7 while (max acc > threshold) ^ (cur iter < max iter) do
8 for each particle i do
9 �vi = (�t · a0

i)/(1 +�t · µ
⇢i

P
j

mj

⇢j
r2Wij) - - - Eq. (3.13)

10 vi = vi +�vi

11 end
12 for each particle i do
13 a0

i =
µ
⇢i

P
j

mj

⇢j
(�vj)r2Wij - - - Eq. (3.15)

14 end

15 max acc = max{
��a0

1

�� , · · · ,
��a0

N

��}
16 cur iter = cur iter + 1

17 end

18 end



84 J.-T. Kim, F. Ruggiero, V. Lippiello, B. Siciliano

3.4 Other components for the SPH-based modelling

3.4.1 Kernel functions

The smoothing kernel function W is crucial for the accuracy of the SPH-
based continuum mechanic simulation. As mentioned, there is no necessary
condition for the kernel except that

Z 1

�1
W (x� x0, h) dx0 = 1, (3.19)

or the discretized approximated version

X

j

mj

⇢j
W (xi � xj , h) ' 1, (3.20)

for the center position xi of the kernel. Its gradient function is given by

riW (xi � xj , h) =
@W

@q
riq, (3.21)

while its Laplace function is

r2
i
W (xi � xj , h) =

@2W

@q2
kriqk2 +

@W

@q
r2

i
q, (3.22)

where q =
kxi � xjk

h
, riq =

xi � xj

kxi � xjkh
, and r2

i
q =

1

kxi � xjkh
�

p
kxi � xjk

h
.

Usually, the radius of the kernel domain h is set to twice the default particle
spacing, that is, four times longer than the particle radius for maintaining
su�cient but not too much neighbour particles. The following Gaussian kernel
is commonly used

W (xi � xj , h) =
1

(2⇡h2)

r

2

exp

✓
� kxi � xjk2

2h2

◆
. (3.23)

Even though a Gaussian kernel is highly recommended statistically, the
computational cost for evaluating the exponential function is expensive, and
it does not have compact support, that is, the range spans �1 to1. There-
fore, an approximated cubic spline kernel function is employed in this work
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W (xi � xj , h) =
1

�

8
><

>:

4
3 � 2q2 + q3 if 0  q < 1
1
3 (2� q)3 if 1  q < 2

0 otherwise,

(3.24)

where q =
kxi � xjk

h/2
, � is a normalization constant equal to {2h,⇡h2, 4

3⇡h
3}

for r = {1, 2, 3}, respectively [203, 205]. A particular kernel to handle vis-
cosity e↵ect, whose Laplacian is always non-negative, r2W � 0, so that
the viscosity force does not increase the relative velocity and avoid to create
unstable status, was introduced in [151].

An additional method to limit the computational burden concerning the
kernel function is to use a look-up table [23]. The kernel values are pre-
computed for sample distances, called keys, between two particles with a
specific span. The keys and the computed values are saved into the look-up
table. Using the closest key to the requested one or calculating the linear in-
terpolation using two narrowest points, finding out the desired approximated
value of the kernel function is possible.

A cubic spline kernel function has been employed within the performed
simulations, while its Laplacian value is set to zero if it is negative. Fur-
thermore, when convenient, the look-up tables storing the kernel value, its
gradient value, and its Laplacian value of the kernel domain, h = 0.005 m and
h = 0.010 m with a span 10�7 m, have been exploited in some simulations
using the particle spacing 1.25 · 10�3 m or 02.5 · 10�3 m, respectively.

3.4.2 Incompressible fluid

Particle-based continuum mechanic methods like SPH have incompressibil-
ity problem, that is, they need some special treatments for modelling in-
compressible continuous materials. To address the incompressibility problem,
various methods, like the PSPH [72], the ISPH [279], the WCSPH [21], the
PCISPH [292], and the PBFM [185] were proposed. Recently, methods like
the IISPH [136] and the DFSPH [22] have shown outstanding performance
in addressing incompressible fluid. The IISPH approach tries to find out a

proper pressure p so that it satisfies the derivative of the density D⇢

Dt
= 0 us-

ing the continuity equation D⇢

Dt
= �⇢r · v and the velocity update equation

v(t + �t) = v(t) + �t f
adv+fp

m
, where fadv 2 Rr is an advection force and

fp 2 Rr is a pressure force computed as

fp
i
= �mi

X

j

mj

✓
pi
⇢2
i

+
pj
⇢2
j

◆
rWij . (3.25)
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The DFSPH method, instead, does not find out the pressure directly but
it retrieves an impulse pressure force defined as

fp
i
= v

i

X

j

mjrWij , (3.26)

where v is the sti↵ness parameter, so that it satisfies D⇢i

Dt
+�D⇢i

Dt
= 0, where

�D⇢i

Dt
= �t

P
j
mj

✓
fpi
⇢i
� fpj i

⇢i

◆
rWij .

In the proposed simulations dealing with viscosity, the IISPH method has
been employed: nevertheless, other incompressibility approaches are doable.
As a contribution, instead of the pressure force equation (3.25) in the original
IISPH method, the one from [209] has been employed

fp
i
= �mi

⇢i

X

j

mj

⇢j

✓
pi + pj

2

◆
rWij , (3.27)

since more stable performance are obtained within the carried out simu-
atlions.

3.5 Simulations

The set-up employed to test the proposed method is composed of an IntelCore
i7-6500U CPU@2.50 GHz, 8.0 Gb of memory with Windows 10 x64 OS,
equipped with MFC of Microsoft, Eigen1, and OpenCV2 for 2D graphic or
Open Scene Graph3 for 3D graphics libraries based on C++ programming
language. Houdini software from SideFX4 has been employed to reconstruct
the mesh from particles, and Blender5 for the graphical rendering. A CUDA
version has been implemented to compare both the proposed algorithm and
the existing conventional viscosity methods. They have been tested on an
NVIDIA GeForce 940MX graphic card. It has been possible to verify that
CUDA implementation has sped up the execution from the 20% to the 50%
compared to OpenMP-based6 implementation.

1 https://eigen.tuxfamily.org/
2 https://opencv.org
3 http://www.openscenegraph.org
4 https://www.sidefx.com
5 https://www.blender.org
6 https://www.openmp.org
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3.5.1 Accuracy and time analysis

The accuracy of the proposed algorithm is firstly addressed. A free-fall ex-
periment is considered, where the velocity of the particles of the continuous
material is measured after applying a uniform external force like gravity. Be-
cause there is no degradation for the gravity during the free-fall, the move-
ment of the particles is the same as the product of the acceleration with the
delay time, �ta. The error introduced by the proposed viscosity method is
due to the threshold ⌘, the viscosity µ, and a. Two values are considered for
the external force, namely a = 10 m/s2 and a = 100 m/s2. The velocity of
the continuous materials is measured after 0.001 s. The particle spacing and
the density ⇢ of the SPH particles are set as 0.0025 m and ⇢ = 100 kg/m3,
respectively. The results are summarized in Table 3.2 and Table 3.3.

⌘ = 0.01 0.1 0.2 0.4 0.6 0.8 1.0

µ = 0.1 0.01 0.05 0.05 0.50 0.50 0.50 0.50
1 0.02 0.20 0.34 0.98 1.69 1.69 2.95
10 0.05 0.56 1.16 2.40 3.69 5.02 6.05
100 0.09 0.92 1.83 3.66 5.49 7.30 9.14
200 0.10 0.96 1.91 3.82 5.73 7.65 9.54
300 0.10 0.97 1.94 3.88 5.82 7.76 9.71
400 0.10 0.98 1.96 3.91 5.86 7.82 9.78
500 0.10 0.98 1.96 3.93 5.89 7.85 9.82

Table 3.2: Error rates (%) of free-fall experiment with a = 10 m/s2 and
various viscosity µ and threshold ⌘ at time 0.001 s in 3D space.

⌘ = 0.1 1.0 2.0 4.0 6.0 8.0 10.0

µ = 0.1 0.01 0.05 0.05 0.50 0.50 0.50 0.50
1 0.02 0.20 0.34 0.98 1.69 1.69 2.95
10 0.05 0.56 1.16 2.40 3.69 5.02 6.05
100 0.09 0.92 1.83 3.66 5.49 7.30 9.14
200 0.10 0.96 1.91 3.82 5.73 7.65 9.54
300 0.10 0.97 1.94 3.88 5.82 7.76 9.71
400 0.10 0.98 1.96 3.91 5.86 7.82 9.78
500 0.10 0.98 1.96 3.93 5.89 7.85 9.82

Table 3.3: Error rates (%) of free-fall experiment with a = 100 m/s2 and
various viscosity µ and threshold ⌘ at time 0.001 s in 3D space.

Based on these data, the graph in Fig. 3.3 is depicted with a threshold rate,

TR =
⌘

kak . From the data, it is possible to appreciate that, as long as the
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Fig. 3.3: The relation between µ and error rate with various threshold rates,

TR =
⌘

kak .

viscosity coe�cient increases, the error rate, ERR =
kak � ka0k
kak , where a is

the input acceleration and a0 is the measured one, converges to the threshold
rate given by the external force, that is,

ERR  ⌘

kak . (3.28)

Besides, it is possible to estimate the execution time of the proposed vis-
cosity method, which is relative to the number of iterations, ITER, because
the time of each iteration can be considered as a constant. The number of
iterations are measured from the previous simulations: the results are sum-
marized in Table 3.4 and Table 3.5.

We used the threshold rate, TR =
⌘

kak , to display the graphical relation

in Fig. 3.4. Furthermore, we display the gradient of each relation equation at

each threshold rate, TR =
⌘

kak , in Fig. 3.5.

Here, we derived the following equation between them

ITER ' �A ln

✓
⌘

kak

◆
· µ, (3.29)

with the coe�cients A = 1.646 in this experiment.
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Fig. 3.4: The relation between µ and the number of iterations with various

threshold rates, TR =
⌘

kak .

Fig. 3.5: The relation between threshold rates, TR =
⌘

kak , and the gradients

of the relation equations in Fig. 3.4.
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⌘ = 0.01 0.1 0.2 0.4 0.6 0.8 1.0

µ = 0.1 4 3 3 2 2 2 2
1 15 10 9 7 6 6 5
10 118 79 67 55 48 43 40
100 1142 761 647 532 465 418 381
200 2278 1519 1290 1062 928 833 760
300 3415 2277 1934 1591 1391 1249 1138
400 4551 3034 2577 2121 1854 1664 1517
500 5688 3792 3221 2650 2317 2080 1896

Table 3.4: The number of iterations of the free-fall simulation with a =
10 m/s2 and various viscosity µ and threshold ⌘ at time 0.001 s in 3D space.

⌘ = 0.1 1.0 2.0 4.0 6.0 8.0 10.0

µ = 0.1 4 3 3 2 2 2 2
1 15 10 9 7 6 6 5
10 118 79 67 55 48 43 40
100 1142 761 647 532 465 418 381
200 2278 1519 1290 1062 928 833 760
300 3415 2277 1934 1591 1391 1249 1138
400 4551 3034 2577 2121 1854 1664 1517
500 5688 3792 3221 2650 2317 2080 1896

Table 3.5: The number of iterations of the free-fall simulation with a =
100 m/s2 and various viscosity µ and threshold ⌘ at time 0.001 s in 3D
space.

Based on these results, it is possible to conclude that the proposed viscosity
method has a predictable accuracy and computation time.

3.5.2 Couette flow experiment

The Couette flow appears within a viscous fluid between two parallel plates.
The upper plate is moving with a constant velocity while the lower is sta-
tionary: because of the di↵erence of the velocities between the two plates,
the speed of each layer of the flow is di↵erent. As time goes to infinity, the

gradient of the velocity to the vertical coordinate,
@vx

@y
, is constant, where

y is the axis orthogonal to the fluid movement that is along the x direction.
The viscosity of the fluid a↵ects how fast the gradient becomes constant. The
following equation is an analytic solution for the Couette flow [208]:
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vx(y, t) = v0
y

y0
+
1X

n=1

2v0

n⇡
(�1)n sin

✓
n⇡

y0
y

◆
exp

✓
� ⌫

⇣n⇡
y0

⌘2
t

◆
, (3.30)

where ⌫ =
µ

⇢
is the kinematic viscosity, v0 2 Rr is the velocity of the top

flow, and y0 2 R is the height of the top flow. By comparing the analytic
solution with the experimental results, it is possible to verify the accuracy of
the viscosity algorithm.

The carried out simulation about the Couette flow has height y0 = 0.1 m,
velocity of the upper plate v0 = 1 m/s, and time t0.01 s, The parameters
relative to the SPH formulation are: ⇢ = 100 for the fluid density, the particle
spacing is equal to 1.25 · 10�3 m, and the time-step is �t = 0.1 · 10�3 s.

(a) (b)

Fig. 3.6: Couette flow simulation with the gap between two plates y0 = 0.1 m,
the velocity of the upper plate v0 = 1.0 m/s, the total simulation time of
0.01 s, the density of the fluid ⇢ = 100, the particle spacing 1.25 · 10�3 m,
time-step �t = 0.1 · 10�3 s, and dynamic viscosity coe�cients : (a) µ = 0.1,
Re = 25, (b) µ = 1.0, Re = 2.5. The right side bar indicates the magnitude
of the velocity of each layer.

The results of two flows with µ = 0.1 and µ = 1.0 after t = 0.01 s are
depicted in Fig. 3.6, in which the gray colour shows the velocity magnitudes
of each layer in the fluid and lines in the right side. Reynolds number for
Couette flow is defined [84] as

Re :=
⇢v0

1
2y0

µ
. (3.31)

Hence, Reynolds numbers for µ = 0.1 and µ = 1.0 are Re = 25 and Re = 2.5,
respectively.

The results are more easily collected in Fig. 3.7. It is possible to verify that
the top and bottom fluid layers’ speeds are almost identical to the velocity of
the upper and lower plates, respectively. The curves in Fig. 3.7-(a) indicate
the velocities of each fluid layer with time t: as time goes, the gradient of
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(a) (b)

Fig. 3.7: Couette flow experiment. (a) The results from time 0.001 s to 0.01 s
with viscosity coe�cient µ = 10. (b) The results from time 0.01 s with various
viscosity coe�cients, namely: µ = 0.1, µ = 1.0, and µ = 10.0. Lines and dots
indicate the analytic solution and SPH simulation results, respectively.

the velocity equation becomes constant. The velocity results of the proposed
algorithm has been compared with the analytic solution of equation (3.30)
in Fig. 3.7-(b) for three di↵erent viscosity fluids, namely µ = 0.1, µ = 1.0,
and µ = 10.0. The velocity decreases smoothly as the height decreases in the
higher viscosity fluid than the lower one. Hence, the proposed algorithm has
almost the same results as the analytic solutions.

3.5.3 Poiseuille plane flow experiment

Next simulation test deals with the Poiseuille plate flow [208, 342]. Like the
Couette flow, there are two parallel plates with distance y0, but both of them
are stationary. A constant force is applied into the fluid between the two
plates. Depending on how strong the viscosity of the fluid is, the velocities
of each layer of the fluid are determined at a certain time. The following
equation is the analytic solution for the Poiseuille plate flow [208]

vx(y, t) =�
a

2⌫
y(y � y0)

�
1X

n=0

4a y20
⌫ ⇡3(2n+ 1)3

sin

✓
(2n+ 1)⇡

y0
y

◆
exp

✓
� ⌫

⇣ (2n+ 1)⇡

y0

⌘2
t

◆
.
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The simulation test is carried out with height y0 = 0.1 m, acceleration a =
10.0 m/s2, time t = 0.1 s, and the SPH relative parameters equal to ⇢ = 100,
the particle spacing equal to 1.25 · 10�3 m, and a time-step �t = 0.0001 s.

(a) (b)

Fig. 3.8: Poiseuille plane flow experiment with the distance between two
plates of y0 = 0.1 m, a fluid acceleration of a = 10.0 m/s2, the total simulation
time of t = 0.1 s, ⇢ = 100, the particle spacing equal to 1.25·10�3 m, the time-
step �t = 0.1 · 10�3 s, and dynamic viscosity coe�cients equal to, namely,
(a) µ = 0.1, Re = 33.3 (b) µ = 1.0, Re = 3.3. The right side bar indicates
the magnitude of the velocity of each layer.

The experimental results of the two flows with µ = 0.1 and µ = 1.0 are
shown in Fig. 3.8. Reynolds number for Poiseuille plane flow is defined as [84]

Re :=
⇢v y0
µ

, (3.32)

where v is the average velocity. Another definition of Reynolds number is

also used, Re :=
⇢v0

1

2
y0

µ
, where v0 is the velocity at the mid-plane of the

channel [317]. The average velocity for Poiseuille plane flow is v = 2
3v0.

Hence, the Reynolds numbers for µ = 0.1 and µ = 1.0 are Re = 33.3 and
Re = 3.3, respectively.

Because the upper and lower plates are stationary, the speeds of the top
and bottom fluid layer are zero, while the speed of the center fluid is max-
imum. The average velocity of the fluid is faster if µ = 0.1, rather than in
case of µ = 1.0.

The results with three di↵erent viscosity fluids µ = 0.1, µ = 1.0, and µ =
10.0 are represented in Fig. 3.9. Since the acceleration is a = 10.0 m/s2, and
the time t = 0.1 s, the maximum speed is 1 m/s. It is possible to appreciate
that the higher the viscosity of the fluid, the lower the maximum reached
speed. Simulation results are verified to be similar to the analytic solutions.
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(a) (b)

Fig. 3.9: Poiseuille flow experiment. (a) The results from time 0.01 to 0.10 s
with viscosity coe�cient µ = 0.1. (b) The results from time 0.1 s with various
viscosity coe�cients, namely, µ = 0.1, µ = 1.0, and µ = 10.0. Lines and dots
indicates the analytic solution and SPH simulation results, respectively.

3.5.4 Comparison with conventional viscosity methods

A comparison with the existing viscosity approaches mentioned in Section 3.1
is carried out to prove the e�ciency of the proposed method. The Couette
flow experimentation presented in Section 3.5.2 is chosen as a test-bed for
such a comparison. It is worth remarking that the comparison results of the
viscosity methods might di↵er depending on what kind of test-bed is used.

The simulations are configured with the height and the velocity of the top
plate as y0 = 0.1 m and v0 = 1 m/s, respectively. The SPH particles for the
incompressible Newtonian fluid have particle spacing equal to 1.25 · 10�3 m
and rest density ⇢0 = 100. Then, the velocity of each particle along the
vertical direction is measured at time 0.01 s and compared with the analytic
solution for a fluid of viscosity 1 using an RMSE method. Because each
viscosity method has its parameters, it is impossible to use the same numbers
for them. Hence, the best parameters matching the analytic solution have
been selected: such a best matching induces longer time-step and less RMSE.

It is worth saying that, within the conventional methods, adjusting the
parameters has frequently caused explosion phenomena of the fluid. This can
be explained by the fact that too close particles have a strong repulsive force.
Therefore, they move very fast in opposite directions. Usually, a fast move-
ment triggers subsequent explosions of nearby particles. Within the compari-
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son experiments, the parameters for which an explosion occurs are neglected.
The best settings corresponding to stable behaviour are thus selected.

The obtained results are summarized in Table 3.6 and their velocity curves
are shown in Fig. 3.10 and Fig. 3.11. In these figures, the gray solid lines
with dynamic viscosity coe�cients µ indicate the reference viscosity curve
calculated by the analytic solution in (3.30).

Method max �t (s) iterations real time/simul time RMSE parameters

[203] 0.00001 1000 6209.3 0.026075 ↵ = 0.01, � = 0, c = 1484
[208] 0.0001 100 635.9 0.006468 µ = 0.4452
[279] 0.0001 100 706.2 0.006747 µ = 0.4452
[6] 0.0001 100 710.8 0.082348 ⌫0 = 0.000005, k = 0
[307] 0.001 44 223.4 0.009944 µ = 1.2, PCG tol. = 1%
[241] 0.001 434 81.2 0.072388 ⇠ = 0.9, PCG tol. = 1%
[23] 0.0001 265686 37863.9 0.155345 � = 0.89, ⌘visco = 0.1
PM 0.001 259 90.6 0.007486 µ = 0.88, ⌘ = 0.1
PM 0.001 278 92.4 0.012060 µ = 1.00, ⌘ = 0.1

Table 3.6: Comparison of the proposed viscosity method with ex-
plicit / implicit methods. Couette flow experiments [208] for simulating a
physical fluid of dynamic viscosity 1 at simulation time 0.01 s, particle spacing
0.00125 m, and flow rest density ⇢0 = 100. No optimization like paralleliza-
tion or precompiled kernel. PM stands for proposed method.

In the following, conventional explicit and implicit viscosity methods are
compared separately.

The first four methods shown in Table 3.6 are explicit viscosity methods.
The viscosity force is calculated according to the related viscosity equations
at each time step �t. Therefore the total iteration number is equal to t/�t.
The classic viscosity equation proposed in [203] requires the shortest time
step, �t = 0.1 · 10�4 s. Both of the viscosity equations proposed in [208]
and in [279] produce very accurate results. The viscosity equation proposed
in [6] generates a zigzag velocity curve. Such a zigzag velocity curve occurs
because the calculation of the shear stress and the calculation of its derivative
are separated so that the particle updated by the shear stress is di↵erent from
the particle updated by the viscosity force. However, the overall pattern of
the velocity curve is similar to the one of the analytic solution.

The following three viscosity methods shown in Table 3.6 are categorized
into implicit viscosity methods. They update their velocities iteratively so
that the relation equation about viscosity for all the fluid particles is solved.
Therefore, viscosity di↵usion can occur within a time step, and these im-
plicit viscosity methods usually work well with relatively long time steps.
In the comparison experiment, the viscosity algorithm proposed in [307] has
recorded the fewest iterations among the conventional methods. The viscos-
ity algorithm proposed in [241] has finished the simulation with the shortest
running time, while the velocity curve is somewhat di↵erent from the one of



96 J.-T. Kim, F. Ruggiero, V. Lippiello, B. Siciliano

the analytic solution. The viscosity algorithm in [23] has also shown a zigzag
curve, with reasons similar to the ones mentioned above.

The method proposed in this paper can work with a long time-step
�t = 10�3 s. The time ratio between the real-time to simulation time of the
proposed approach ranked second among the compared viscosity methods.
Even though the best time performance is recorded by the viscosity method
proposed in [241], the proposed method has higher accuracy. Moreover, it
has been appreciated that the proposed method is more stable when there
is a change in the viscosity parameter. Based on these results, it is possible
to a�rm that the proposed viscosity is comparable to the existing viscosity
methods regarding accuracy, speed, and stability.

3.5.5 Additional simulations

Two further simulations are presented. The former is about free-falls of sev-
eral viscous fluids (water, honey, ketchup, and shortening) over a bunny sculp-
ture. The dynamic viscosity coe�cients of these fluids are µ = 8.94 ⇥ 10�4,
2 � 10, 50 � 100, and ⇡ 250, respectively. The following parameters have
been considered to simulate these fluids, having in mind the above range
µ = 0.0, 5.0, 70.0, and 250.0. The simulation scenes for each case study
are shown in Fig. 3.12. Because the time gap between the viscous fluids is
big, i.e., the movement of shortening is languid compared to other fluids, the
best scene for each liquid is illustrated. With the help of additional graphical
treatment, it is possible to verify how the simulated case is close to the real
one.

The latter simulation is about the stretching of a bread dough. Doughs are
a non-Newtonian fluid, and they have complex properties including viscosity,
elasticity, and plasticity [201, 202, 291]. Hence, the proposed viscosity method
for Newtonian fluids does not perfectly match the simulation of a dough,
but it can approximately simulate its behaviour. Taking data from physical
experiments, the shear stress of general a dough has a relation equation ⌧ =
298.76 + 5177 �̇0.417 [202], where �̇ is the strain rate. The dynamic viscosity
coe�cient µ = 2500.0 has been selected for a simulation with 6000 particles
with spacing 1.25 · 10�3 m. Some results are shown in Fig. 3.13 at time 0 s,
1.5 s, and 3 s, respectively. The dough is pushed, stretched, and torn: the
simulated behaviours are similar to a real dough.



3 Smoothed particle hydrodynamics-based viscous deformable object modelling 97

(a) Monaghan [203] (b) Morris et al. [208]

(c) Shao & Lo [279] (d) Andrade et al. [6]

Fig. 3.10: Couette flow experiments with various conventional viscosity meth-
ods and the proposed one for simulating a physical fluid of viscosity 1 at
simulation time 0.01 s, particle spacing of 1.25 ·10�3 m, and flow rest density
⇢0 = 100. The relative data are shown in Table 3.6.

3.6 Discussion and conclusion

A novel implicit viscosity method based on the SPH formulation for incom-
pressible Newtonian fluids has been proposed. Such formulation can simulate
wide-ranged viscosity behaviours in continuous materials.

Concerning the contributions, the proposed method exhibits a shorter
computation time; it employs a physical viscosity coe�cient, which helps
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(a) Takahashi et al. [307] (b) Peer et al. [241]

(c) Bender & Koschier [23] (d) Proposed method

Fig. 3.11: Couette flow experiments with various conventional viscosity meth-
ods and the proposed one for simulating a physical fluid of viscosity 1.0 at
simulation time t = 0.01 s, particle spacing r = 0.00125m, and flow rest
density ⇢0 = 100. Relative data are shown in table 3.6.

predict the viscous behaviour of the continuous material more accurately.
The carried out simulations show that the computational time is predictable.
Finally, the accuracy is similar or higher than conventional viscosity methods
in modelling continuous and viscous materials. Additionally, some graphical
simulations show that the approach might be suitable for graphics anima-
tions.
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Fig. 3.12: Simulations of viscous fluids: water µ = 8.94 ⇥ 10�4 (0.0), honey
µ = 2�10 (5.0), ketchup µ = 50�100 (70.0), and shortening µ ⇡ 250 (250.0).
The numbers indicate physical dynamic viscosity coe�cients and the numbers
in parenthesis are the coe�cients for these simulations.

Fig. 3.13: Simulation of stretching of a bread dough with the dynamic vis-
cosity coe�cient µ = 2500.0 at simulation time (left) 0 s, (middle) 1.5 s, and
(right) 3 s.


