
Chapter 5

Pizza-peel handling through a sliding
nonprehensile manipulation primitive

Alejandro Gutierrez-Giles, Fabio Ruggiero, Vincenzo Lippiello, Bruno
Siciliano

Abstract The sliding primitive is a ubiquitous nonprehensile manipulation
task, generally performed by mechanical systems represented by underactu-
ated nonlinear models. A literature review of the recent works dealing with
this task is first introduced. Then, a particular nonprehensile manipulation
task that has arisen in the framework of the RoDyMan project, i.e., a pizza
and peel mechanical system, is addressed. A more in-depth study is presented
for this system, including modelling, control, and stability analysis. Finally,
a discussion on the current achievements and some directions for future work
is provided.
This chapter is based on the work presented in [119].
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Table 5.1: Main symbols used in this chapter.

Definition Symbol

Peel (hand) frame H
Pizza (object) frame O
Position of the origin of the frame H in W oh =

⇥
xh yh zh

⇤T 2 R3

Position of the origin of the frame O in H oh
o =

⇥
xo yo zo

⇤T 2 R3

Rotation matrix of H with respect to W Rh 2 SO(3)
Rotation matrix of O with respect to H Rh

o 2 SO(3)
Rotation angle of H with respect to W around xh ✓ 2 R
Rotation angle of O with respect to H around zo � 2 R
Mass of the peel mh > 0
Mass of the pizza mo > 0
First row-first column element of the peel’s inertia
matrix in H

Ihx 2 R

Inertia matrix of the pizza in O Io 2 R3⇥3

First row-first column element of Io Iox 2 R
Third row-third column element of Io Ioz 2 R
Gravity acceleration g = 9.81 m/s2

Force applied over the peel along xh uh 2 R
Torque applied around the axis xh ⌧h 2 R
Linear Coulomb friction coe�cient between the
pizza and the peel

µo > 0

Angular Coulomb friction coe�cient between the
pizza and the peel

µ� > 0

Desired pizza rotation speed �̇d 2 R
Controller gains ki 2 R, with i = 1, . . . , 9

5.1 Brief introduction

Nonprehensile manipulation through the sliding primitive is a critical control
application in the industry, particularly in the so-called part feeders. Accord-
ingly, much research has been carried out over the last years in various direc-
tions. For example, optimisation in terms of the time required to positioning
and orienting a part on a plane is one of the most pursued objectives. Another
direction of research deals with the minimum number of actuators/degrees
of freedom required to complete a given sliding motion task.

From a theoretical point of view, the specialists have made a great e↵ort to
understand the dynamic e↵ects of all the forces that interact during a sliding
manipulation task. In particular, it has been noticed that friction, both static
and dynamic, plays a fundamental role in this kind of task. Although there
are very precise mechanisms in the actuality that can e�ciently move a given
part to an arbitrary position and orientation in the plane, most of them carry
out this task employing open-loop controllers.

The advantages of the feedback control are well-known inside and out-
side the control community, and thus there are some e↵orts to incorporate
feedback for nonprehensile sliding manipulation. This chapter aims to design
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a model-based feedback controller for a specific sliding manipulation task,
which consists of an unactuated disk and a 2-DoF manipulator.

First, a review of the current state of research is introduced, related to
moving parts through force fields generated by the friction forces arising
when two surfaces in contact are in relative motion. Then, a particular ap-
plication of the sliding primitive in the context of the RoDyMan project is
described, i.e., a pizza and peel manipulation system. A mathematical model
is developed for this system, which in turn serves as a base for designing the
feedback control strategy.

5.2 State of the art

Manipulating objects through a vibrating surface has been a handy applica-
tion in the industrial context, in particular for part feeders. This application
has motivated much research in the last decades. From a theoretical point
of view, in the late 1990s, the static equilibrium positions and orientations
of two-dimensional parts under planar vector fields are investigated in [67],
without specifying which mechanism is employed to create these vector fields.
On the other hand, the mechanisms to create such vector fields are analysed
in [33], where a pixel-wise array is proposed as a universal planar mechanism.
In this same work, the authors establish a theoretical tradeo↵ between me-
chanical design and motion planning complexities. The universal parts feeders
are studied in [34] for non-symmetric parts in the philosophy of minimalist
robotics, i.e., the minimal configuration of resources required to solve a given
task. Later, a fascinating result is stated in [259]: a horizontal vibrating plate
is a universal planar manipulator, including the construction of the proposed
mechanism. This mechanism is improved in [260], where the authors are ca-
pable of moving a specific part of several over the plate without moving the
remaining ones. A variation of the universal planar manipulator, similar to
the one developed in [33], is constructed in [100] by employing three orthogo-
nal actuators. All the approaches mentioned above use open-loop controllers.

To the best of the authors’ knowledge, one of the first attempts to introduce
feedback is presented in [215], where the authors utilise non-smooth analysis
and discontinuous control to stabilise an arbitrary position and orientation
of the part. Interestingly, in the same article, it is shown that the open-
loop controllers are unstable in the orientation coordinate near the static
equilibrium points.

In [326], it is noted that the existing universal planar manipulators always
generate a force vector field with zero divergence, which is a practical dis-
advantage. The authors design a universal planar manipulator up to 6 DoFs
that can generate force fields with non-zero divergence to solve this problem.
This mechanism is employed in [327] in conjunction with a bang-bang con-
trol strategy, contrarily to the commonly employed sinusoidal, to generate
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movement in the parts towards and away predefined nodal lines. Later, the
same authors proposed an optimal controller to generate a twist field that can
position and orient a part using their previously designed universal planar
manipulator. The e↵ect of both dynamic and static friction on the velocity
of the part is studied in [319], where a strategy is proposed to maximise the
transport velocity of the sliding parts.

A task-specific mechanism is designed in [130] to translate and rotate a
disk to an arbitrary position and orientation. The Neapolitan pizza chefs
inspired this mechanism, and the design philosophy is that of minimalist
robotics. The authors analyse several configurations for completing the task,
arriving at the solution of a two-DoF manipulator. The mechanism and the
control strategy are further improved in [131]. The authors also show in [129]
that the same strategy can be applied to rotate a deformable disk. Later,
the same authors proposed a model of the deformable object in [254]. At
the same time, they also find a correlation between the plate frequency and
di↵erent kinds of motion, i.e. sliding, walking, and running. Finally, in [255],
the same authors find that a deformable disk rotates faster than a rigid one.
The e↵ects of the friction between the plate and the disk are investigated in
the same article.

5.3 Pizza-Peel manipulation task

In this section, a dynamic model is first developed based on the Euler-
Lagrange equations of motion and some friction properties found in the lit-
erature. Then, a feedback control strategy is designed to rotate the pizza. A
stability analysis is later presented to show the boundedness of both pizza
and peel coordinates and a limit cycle that rotates the pizza at the desired
speed. Finally, a numerical simulation is presented to illustrate the validity
of the approach.

5.3.1 Dynamic model

Recall the relevant frames as the world frame, W, the frame attached to the
peel (hand), H, and the frame attached to the pizza (object), O, as shown in
Fig. 5.1. In this chapter, a superscript is used to denote to which frame is the
vector or matrix referenced. When referred to W, this superscript is omitted.
It is assumed that that the peel is driven by a robotic manipulator. The
generalised coordinates for the peel are chosen to be xh 2 R and ✓ 2 R. The
generalised coordinates for the pizza are chosen as xo, yo,� 2 R. Therefore,
the configuration of the system is completely described by the vector
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q =
⇥
xh ✓ xo yo �

⇤T 2 R5. (5.1)

Fig. 5.1: Peel and pizza system.

The pizza centre of mass with respect to W is given by

p
o
= p

h
+Rhp

h

o
=
⇥
xh + xo yoc✓ yos✓

⇤T
, (5.2)

where sx and cx are shorthand notations for sin(x) and cos(x), respectively.
The orientation of O with respect to W is described by the rotation matrix

Ro = RhR
h

o
. (5.3)

From this last matrix, one can obtain the pizza angular velocity vector !o 2
R3 through the relation

Ṙo = S(!o)Ro (5.4)

The kinetic energy, in terms of the generalised coordinates and velocities,
is given by

T (q, q̇) =
1

2
mhẋ

2
h
+

1

2
Ihx✓̇

2 +
1

2
moṗ

T
o
ṗ
o
+

1

2
!T

o
RoIoR

T

o
!o. (5.5)

The potential energy can be computed by

U(q) = mogs✓yo . (5.6)

For obtaining the dynamic model, consider the Euler–Lagrange equations of
motion

d

dt

✓
@L
@q̇

◆T

�
✓
@L
@q

◆T

= ⇠ (5.7)

with Lagrangian L(q, q̇) = T (q, q̇) � U(q) and the non-conservative and
external forces are represented by the vector

⇠ =
⇥
uh ⌧✓ fx fy ⌧�

⇤T
, (5.8)
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where fx, fy, and ⌧� are explained below.
The Coulomb friction terms play an important role for this particular task.

These terms are defined as functions of the relative velocities between the peel
and the pizza ẋo and ẏo, and are described by [131]

fx = mogµosign(ẋo) (5.9)

fy = mogµosign(ẏo) , (5.10)

where sign(x) is the function defined by

sign(x) =

8
><

>:

1 if x > 0

0 if x = 0

�1 if x < 0

.

As explained in [131], there is a torque over the zh
o
axis produced by the

movement of the xh coordinate and the change of the pressure distribution
which in turn is induced by the acceleration on the ✓ coordinate and is given
by

⌧� = µ�Ioxsign(ẋo)✓̈. (5.11)

By Newton’s third law of motion, there must be a reaction torque acting on
the ✓ coordinate. However, this torque can be neglected by assuming that
the inertia of the peel is much bigger than that of the pizza.

A further simplification can be made if the linear and angular accelerations
of the peel are assumed to be the inputs, i.e.,

u ,
⇥
uh u✓

⇤T ,
⇥
ẍh ✓̈

⇤T
. (5.12)

The following approximation of the sign function is made in order to employ
continuous tools to analyse the system dynamics

sign(xi) ⇡ tanh(kixi) , (5.13)

where each ki > 0 is a constant. The objective is to control the pizza rotation
speed, for which the regulation error is defined as

˜̇� = �̇� �̇d 2 R , (5.14)

Next, let the state space vector x 2 R9 be defined by

x =
⇥
x1 x2 · · · x9

⇤T

,
h
xh ✓h xo yo ẋh ✓̇h ẋo ẏo

˜̇�
iT

. (5.15)

Thus, the system dynamics can be put in the form
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ẋ = f(x) + g1u1 + g2(x)u2 , (5.16)

where

f(x) =

2

66664

x5

x6

x7

x8

f2(x)

3

77775
g1 =


04

g12

�
g2(x) =


04

g22(x)

�
, (5.17)

with

f2(x) =

2

66664

0
0

� bo
mo

x7 � gµo tanh(k7x7)

� bo
mo

x8 � gµo tanh(k8x8)� g sin(x2) + x4x2
6

0

3

77775
(5.18)

g12 =
⇥
1 0 �1 0 0

⇤T
(5.19)

g22(x) =
⇥
0 1 0 0 �µ� (Iox/Ioz) tanh(k7x7)

⇤T
. (5.20)

By computing the Philip Hall basis [216, p. 344] with the vector fields f ,
g1, and g2, it can be verified that the accessibility distribution is of dimension

9 in the set D =
n
x 2 R9 : ✓̇ 6= 0, ẋo 6= 0, yo 6= 0

o
, and therefore the system

is accessible. Furthermore, by computing the base

{g1,g2, [g1, f ] , [g2, f ] , [g1,g2] , [f , [g1, f , ]] , [f , [g2, f ]] ,

[f , [g1,g2]] , [g1, [g1, f ]] , [g2, [g2, f ]]}

it can be proven that the system is strongly accessible in D [31, p. 180].
Nevertheless, if the centripetal force term x4x2

6 is neglected, as it is commonly
assumed in the related literature (see for example [328, 131]), the strong
accessibility condition is no longer fulfilled, but only the accessibility one,
restricted to Da =

�
x 2 R9 : ẋo 6= 0, ẏo 6= 0

 
. The following assumption is

made in this work.

Assumption 5.3.1 The centrifugal force term x4x2
6 in (5.16) can be ne-

glected. ⇤

This assumption is made to simplify the controller design and the stability
analysis, but the term x4x2

6 is kept for the numerical simulation of the system
dynamics.
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5.3.2 Controller design and stability analysis

The control objective of this work is to induce a rotating movement on the
pizza dough at a desired angular speed �̇d while keeping the remaining co-
ordinates as close to zero as possible. The contribution of this work is the
design of a closed-loop control law for achieving the task mentioned above.
The first control law, intended for the linear motion of the peel, is composed
of a feedforward term, very similar to the reported open-loop controllers in
the literature, plus a PD control to stabilise the linear peel direction, that is

u1 = �k1x1 � k5x5 + ah sin (!ht) (5.21)

u2 =
tanh(k7x7)Ioz

µ�Iox
k9x9 � k2x2 � k6x6 , (5.22)

with ah 2 R and !h > 0. The feedforward term ah sin (!ht) ensures the
required condition ẋo 6= 0. On the other hand, the control law (5.22) is a PD
control that stabilises the peel orientation, plus a nonlinear term employed to
induce a rotation in the pizza by exploiting the torque generated from (5.11).

In order to carry out a mathematical analysis, consider the closed-loop
dynamics

ẋ1 =x5,

ẋ2 =x6,

ẋ3 =x7,

ẋ4 =x8,

ẋ5 =� k1x1 � k5x5 + ah sin (!ht) ,

ẋ6 =� k2x2 � k6x6 +
Ioz

µ�Iox
tanh(k7x7)k9x9,

ẋ7 =� gµo tanh(k7x7) + k1x1 + k5x5 � ah sin (!ht) ,

ẋ8 =� gµo tanh(k8x8)� g sin(x2),

ẋ9 =� k9x9 tanh
2(k7x7) +

µ�Iox
Ioz

tanh(k7x7) (k2x2 + k6x6) . (5.23)

The following analysis is developed considering that stationary state has
reached. For a more straightforward exposition of the following develop-
ment, the closed-loop dynamics is divided into the four subsystems shown
in Fig. 5.2.

1) The subsystem ⌃1, comprised of the states x1 and x5, is a linear stable
system with arbitrarily chosen poles by means of the gains k1 and k5,
under the e↵ect of the sinusoidal input ah sin(!ht). The amplitude of the
states x1 and x5 in stationary state are sinusoidals with frequency !h and
amplitude easily computed to be
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Fig. 5.2: Closed-loop dynamics.

|x1| =
ah

D(k1, k5,!h)
(5.24)

|x5| =
ah!h

D(k1, k5,!h)
, (5.25)

where

D(k1, k5,!h) =
q

(k1 � !2
h
)
2
+ k25!

2
h . (5.26)

Fig. 5.3: Nonlinear feedback loop.

2) The second subsystem, which corresponds to the states x3 and x7, is anal-
ysed by employing the describing function method [286, p. 157], for which
the configuration shown in Fig. 5.3 is considered with u = �u1 and y = x7.
To approximate the nonlinearity in the ⌃2 subsystem, the following de-
scribing function is used

gµo tanh(·) ⇡
4gµo

⇡A(·) , (5.27)

where A(·) is the input amplitude of the nonlinear block signal, which in
turn is assumed to be sinusoidal. The approximate closed-loop transfer
function of the subsystem ⌃2 is
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y(s) =

✓
⇡A(·)

s⇡A(·) + 4gµo

◆
u(s) = h(s)u(s) . (5.28)

The output of this system is the sum of a self-oscillatory response and a
forced response [35, Ch. 3]. The frequency of the self oscillatory component
!s is obtained by solving the equation

j!s =
4gµo

⇡A(·) . (5.29)

Because A(·) is a positive and real function, no unforced periodic response
is present. On the other hand, the gain for the closed-loop pseudo-transfer
function can be computed as

|h(s)|= ⇡2A2(·)p
!2
h
⇡2A2(·) + 16g2µ2

o

, (5.30)

which has a minimum at zero and a maximum at !�1
h

. The input to this
subsystem is u = �u1, which is a sinusoidal signal with zero mean, fre-
quency !h and amplitude bounded by

|u1|
ah!2

h

D(k1, k5,!h)
. (5.31)

Therefore, the approximate steady state output of this subsystem is a
sinusoidal with zero mean given by

x7 = a7 sin (!ht+ �7) , (5.32)

where
|a7|

ah!h

D(k1, k5,!h)
(5.33)

and �7 2 R is the phase shift given by

�7 = atan2(�ah!h, 4gµo/(⇡A(·))) , (5.34)

which can be bounded by �⇡/2  �7  0. The response in steady state
for x3 can be approximated by

x3 = a3 sin (!ht+ �3) + c3 , (5.35)

where c3 2 R is a bias constant, �3 2 R is a phase shift, and

|a3|
ah

D(k1, k5,!h)
. (5.36)

3) For showing the stability properties of the subsystem ⌃3, it is first recalled
the following [152, Theorem 10.3].
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Theorem 5.3.1

Consider the system
ẋ = f(x) + ✏g(t,x, ✏) . (5.37)

Suppose

– f , g, and their first partial derivatives with respect to x are continuous
and bounded for all (t,x, ✏) 2 [0,1)⇥D0⇥ [�✏0, ✏0], for every compact
set D0 ⇢ D, where D ⇢ Rn is a domain that contains the origin.

– The origin is an exponentially stable equilibrium point of the au-
tonomous system

ẋ = f(x) ; (5.38)

– g(t,x, ✏) is T -periodic in t.

Then, there exist positive constants ✏⇤ and k such that for all |✏|< ✏⇤,
equation (5.37) has a unique T-periodic solution x̄(t, ✏) with the property
that kx̄(t, ✏)k k|✏|. Moreover, this solution is exponentially stable. ⇤

After employing the identity tanh2(x) = 1� sech2(x), the dynamics of the

subsystem ⌃3 can be written as equation (5.37) with x =
⇥
x2 x6 x9

⇤T

and

f =

2

4
x6

�k2x2 � k6x6

�k9x9

3

5 (5.39)

g =

2

664

0
1

cµ
tanh(k7x7)k9x9

sech2(k7x7)k9x9 + cµ tanh(k7x7) (k2x2 + k6x6)

3

775 (5.40)

where cµ = µ�IoxI�1
oz , f(x) = f and g(t,x, ✏) = g, with ✏ = 1. As proven

in the item 2), the steady state solution for x7 is a T -periodic function of
time t with period T = 2⇡/!h, and thus it is g in (5.40). It is not di�-
cult to prove that the autonomous subsystem ẋ = f(x), with f(x) defined
in (5.39), is exponentially stable. By applying Theorem 5.3.1 restricted to
the region D , {x : kxk ⇢}, with ⇢ > 0, one can conclude that the solu-

tion trajectories for the states x =
⇥
x2 x6 x9

⇤T
are T -periodic functions

of time, and the states converge exponentially to these solutions. As stated
in Theorem 5.3.1, the periodic solution is bounded by kx̄(t, ✏)k k|✏|. Fur-
thermore, from the theory of linear bounded input-bounded output sys-
tems, the ultimate bound k|✏| can be made arbitrarily small by making
the gains k2, k6, and k9 arbitrarily large.

4) For the fourth subsystem, consider again the block diagram depicted in
Fig. 5.3, with u = g sin(x2), y = x8, and w = x4. The transfer function
employed to approximate this system is given by (5.28). By the same
arguments as the given in the item 2), the solution trajectories for this
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system can be approximated by

x4 = a4 sin(!ht+ �4) + c4 (5.41)

x8 = a8 sin(!ht+ �8) , (5.42)

where c4 2 R is a bias constant and

a4  c8g

!2
h

(5.43)

a8  c8g

!h

, (5.44)

with c8 = sup
t

(|sin(x2(t))|).

In summary, the above analysis shows that the approximate solutions of
the closed-loop system are bounded and periodic. Furthermore, the ultimate
bound for the states x2, x6, and x9 can be driven arbitrarily close to zero,
which means that the peel will be as close as desired to the horizontal position
and that the pizza rotation speed will be arbitrarily close to the desired value,
i.e. �̇ ⇡ �̇d.

5.3.3 Numerical simulation

A numerical simulation is proposed to validate the results of Section 5.3.1.
The centrifugal term x4x2

6 in (5.20) is kept for the simulation to test the
robustness of the controller design. The parameters considered for the system
are displayed in Table 5.2.

Table 5.2: Parameters for the numerical simulation.

Meaning Parameter Value
Pizza mass mo 0.25 kg

Pizza x-inertia moment Iox 0.01 kgm2

Pizza z-inertia moment Ioz 0.028 kgm2

Linear Coulomb friction coe�cient µo 0.5
Rotational Coulomb friction coe�cient µ� 0.5

Gravity acceleration constant g 9.81m/s2

The parameters of the controller (5.21)–(5.22) were chosen empirically as
!h = 18 rad/s, ah = 2, k1 = 10, k2 = 10, k5 = 10, k6 = 50, k7 = 20,
and k9 = 40. It is considered that the sample time for the control loop is
T = 5ms. The desired speed for the pizza rotation is 1 rad/s in counter-
clockwise direction.
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Fig. 5.4: Pizza rotation speed: real (—), desired (- - -)

The actual and desired rotation speed are shown in Fig. 5.4. It can be
appreciated that the actual speed is very close to the desired one in the
steady-state.

The phase portrait of xh is shown in Fig. 5.5. In this plot and the fol-
lowing ones, a blue marker indicates the initial point, a green line denotes
the first 15 seconds (transient response), and a red line indicates the last 15
seconds (steady-state). It can be appreciated that the xh and ẋh coordinates
keep oscillating around zero. Indeed, the amplitude of xh coincides with the
one predicted by (5.24), i.e , |xh|= 5.5 ·10�3 m. On the other hand, the phase
portrait for the ✓h coordinate is shown in Fig. 5.6. In this figure, it can be
appreciated that in the stationary state, this coordinate remains oscillating
very close to zero, following the stability analysis of Section 5.3.1.

The phase portrait for the xp coordinate is shown in Fig. 5.7. The predicted
value for the amplitude of the oscillations for xp computed in (5.36) has as
an upper bound |a3| 5.5 · 10�3, which is a very conservative one, as can
be seen in the figure. The reason behind this large margin is because we are
taking the worst case for the pseudo-transfer function gain in (5.30). Finally,
the phase portrait for the yp coordinate is displayed in Fig. 5.8. As it can be
appreciated in the figure, the oscillation amplitude of this coordinate can be
made arbitrarily small, as it depends on the amplitude of ✓h, which in turn
can be made arbitrarily small. However, in this case, there is a non-negligible
bias term of about 6 · 10�3 m as stated in (5.41).

5.4 Discussion and conclusion

In this chapter, an overview of the sliding manipulation primitive is first given,
and then a particular case was studied. The main intention was to underline
the potential of moving parts using sliding and the complication arising in the
control design and mathematical analysis. The literature review showed that
although within the nonprehensile manipulation tasks, the sliding primitive is



124 A. Gutierrez-Giles, F. Ruggiero, V. Lippiello, B. Siciliano

Fig. 5.5: Phase portrait of xh and ẋh: t = 0 s (∗), 0 < t  15 s (—), t >
15 s (—).

Fig. 5.6: Phase portrait of ✓h and ✓̇h: t = 0 s (∗), 0 < t  15 s (—), t >
15 s (—).

one of the most commonly used in the industry, most controllers are designed
in an open-loop fashion, and they lack a formal mathematical analysis. This
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Fig. 5.7: Phase portrait of xp and ẋp: t = 0 s (∗), 0 < t  15 s (—), t >
15 s (—).

Fig. 5.8: Phase portrait of yp and ẏp: t = 0 s (∗), 0 < t  15 s (—), t >
15 s (—).

chapter attempted to solve a particular sliding manipulation task from the
model-based feedback control perspective. By employing a numerical sim-
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ulation, the designed controller satisfies the desired task with the stability
properties given by the mathematical analysis carried out in this chapter.

Although there are some nice features of the designed controller over the
existing ones in the literature, it still has some room for improvement. In
this direction, the design could be improved to obtain asymptotic stability
in all the coordinates or practical asymptotic stability. The experimental
evaluation of the controller is also left as remaining work. Furthermore, the
generalisation of the results presented in this chapter to a more extensive set
of sliding manipulation tasks is the ultimate goal pursued in this work.


