
Chapter 9

Planning framework for robotic pizza
dough stretching with a rolling pin

Jung-Tae Kim, Fabio Ruggiero, Vincenzo Lippiello, Bruno Siciliano

Abstract Stretching a pizza dough with a rolling pin is a nonprehensile
manipulation. Since the object is deformable, force closure cannot be es-
tablished, and the manipulation is carried out in a nonprehensile way. The
framework of this pizza dough stretching application that is explained in this
chapter consists of four sub-procedures: (i) recognition of the pizza dough
on a plate, (ii) planning the necessary steps to shape the pizza dough to the
desired form, (iii) path generation for a rolling pin to execute the output
of the pizza dough planner, and (iv) inverse kinematics for the bi-manual
robot to grasp and control the rolling pin properly. Using the deformable
object model described in Chapter 3, each sub-procedure of the proposed
framework is explained sequentially.
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Table 9.1: Main symbols used in this chapter.

Definition Symbol

Center of the pizza dough x0 =
⇥
cx cy

⇤T 2 R2

Generic point of the dough x 2 R2

Boundary of the pizza dough @S
Thickness of the dough h > 0
Frame associated to the plate D
Angle between the longest-axis of the dough shape
and the x-axis of D

✓ 2 R

9.1 Brief introduction

Making a pizza is a wonderful art, and it requires delicate skills like preparing
a pizza dough mixed with wheat powder, water, salt, and other ingredients.
An accurate ratio is put in the preparation, stretching it dynamically and
quickly into a disk-shaped, saucing or dressing it with proper ingredients and
quantity, and finally burning it evenly and su�ciently in a wood-burning
oven.

Fig. 9.1: Application: stretching a pizza dough with a rolling pin.

Among these technical processes, this chapter focuses on stretching a pizza
dough with a rolling pin (Fig. 9.1). This process includes two critical tech-
niques: (i) the manipulation of a deformable object, and (ii) the control of
the rolling pin to execute the proper actions. Regarding the former, di�cul-
ties arise during the manipulation planning of a deformable object because
of the absence of a precise model. Indeed, typical deformable objects can
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not be described with just one property but have multiply properties like
viscosity, elasticity, plasticity, or others, and mixed of them. Even though
several proposed models represent these properties of a deformable object,
it is not easy to find a suitable one for the pizza dough. In this chapter, the
SPH formulation explained in Chapter 3 is used to model a highly viscous
deformable object like the pizza dough, which is eligible to describe highly
deformable objects, even for liquids. Regarding the latter, researches about
controlling a tool with a robotic system are well established. However, non-
prehensile manipulation is still a relevant and challenging topic. A general
inverse-kinematics manipulation planning for the RoDyMan robot equipped
with a rolling pin has been used in this pizza dough stretching application.

Both techniques are explained in this chapter. The outline of the chap-
ter consists of this introduction and a survey about the related state of
the art (section 9.2). The sketch of the proposed framework for the pizza
dough stretching is depicted in section 9.3, while the explanation of each
sub-procedure is given from section 9.4 to section 9.7. Simulation results are
explained in section 9.8. Finally, section 9.9 concludes the chapter.

9.2 Related research

Manipulation of a deformable or a rheological object (i.e., the pizza dough)
requires an understanding of the object’s properties like viscosity, elasticity,
and plasticity. For example, a bread dough consists of gluten proteins and
various minor ingredients, including minerals. The gluten proteins play a
crucial role in determining the unique baking quality of wheat by conferring
water absorption capacity, cohesivity, viscosity, and elasticity. Gluten proteins
can be divided into two main fractions according to their solubility in aqueous
alcohols: the soluble gliadins and the insoluble glutenins [339]. It is widely
accepted that gliadin accounts for the viscous properties and glutenin imparts
the strength and elasticity that are necessary to hold the gases that are
produced during fermentation and baking [322].

Many researchers have tried to characterize the bread dough’s fundamental
properties and analyze the influences of the substances. The densities of vari-
ous doughs were measured in [46], while the viscoelasticity of bread dough was
examined in [51, 91, 186]. The main substances for the bread dough that are
H2O (water), D2O (heavy water), esterifying agents for glutamine residues,
urea, salts, agents a↵ecting disulfide bonding, and the protein subunits, were
listed up in [3], also characterizing the influence of the substances for the rhe-
ology of the bread dough. Seventeen commercially available European wheat
cultivars were sampled in [322]. Through these samples, the authors had the
creep-recovery experiments and analyzed for a set of chemical and rheological
parameters and baking quality using the PCA method. The dynamic rheolog-
ical properties of glutens fractions with two English-grown wheat cultivars,
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Hereward and Riband, were studied in [154]. The authors confirmed that the
viscoelasticity of the glutenin sub-fraction of gluten and di↵erences in the
ratio of gliadin to glutenin are the main factors governing inter-cultivar dif-
ferences in the viscoelasticity of wheat gluten. Similarly, in [321], the authors
experimented with the uniaxial elongational and shear rheology properties
of doughs a↵ected by the protein contents or glutenin-to-gliadin ratio. The
conclusion was that increasing protein content lowered the maximum shear
viscosity while increasing the glutenin-to-gliadin ratio increased the maxi-
mum shear viscosity. Stress and strain of the dough related to the ratio of
the feed sheet thickness of the roller gap and the roller’s speed in the sheeting
system were studied in [87]. The authors applied the lubrication approxima-
tion for the equation of motion and used an inelastic power-law model for the
dough rheology. The relationship between the rheological properties for static
dough and dynamic rheological properties for dough crumbs was instead in-
vestigated in [36]. The former was evaluated by texture profile analysis, like
uni-axis (stretching) and bi-axial extension (inflation), and gluten index in
static compression. The latter was evaluated through dynamic mechanical
analysis and thermal mechanical analysis in dynamic compression. In [200],
the authors described the influence of various substances in a dough. They
introduced widely used modeling methods for dough rheology like power-
law, Maxwell model, Lethersich model, Peleg model, and listing the vari-
ous measurement methods for dough properties like farinograph, mixograph,
rheomixer, extensigraph, alveograph, amylograph, maturograph, and so on.
Base on these known properties, several visco-elastoplastic models were pro-
posed, as the Herschel-Bulkley model and the K-BKZ model [291]. Bingham
model is also one of the well-known models for representing plastic proper-
ties [27].

The baking industry uses rolling (or sheeting) between counter-rotating
rolls as a dough forming process for various products, such as cookies, crack-
ers, pizza, bread, and pastry. The rolling process is akin to calendering, which
is used in many industries, such as the paper, plastics, rubber, and steel in-
dustries [202, 290]. An overall process for stretching of bread doughs was
designed and implemented in [316].

There are more general researches for acquiring the properties of de-
formable objects. A four-element model for characterizing the viscoelastic-
ity was proposed in [132]. In [68], a neural network model was employed to
estimate an object’s elastic properties. A FEM model was instead employed
in [333] to estimate such properties. Interactive approaches to get object’s
elastic properties, even without the use of any specific model, were used
in [25, 99, 161, 248, 289].
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9.3 Framework for a pizza dough stretching behaviour

The application handled by this chapter roughly consists of three main com-
ponents: (i) a robotic system grasping a tool, (ii) a deformable object, and
(iii) the tool itself. In this application, the employed robotic system is the
RoDyMan robot, the deformable object is a pizza dough, and the tool is a
rolling pin (see Fig. 9.1).

The proposed framework is described in this section. Input data from a
sensor device are acquired. This generates a proper action sequence for the
robot. The employed sensor device is a RGB-D Kinect camera mounted on
the head of the RoDyMan robot.

The devised framework can be split into four components: (i) (deformable)
object recognition, (ii) planning actions on the deformable object; (iii) plan-
ning actions for the tool, and (iv) robot manipulaiton planning. As evident
from Fig. 9.2, these components are concatenated each other.

Fig. 9.2: Sketch of the overall process that consists of four concatenated
components.

The first component, which is the object recognition module, gets sensor
data as input. Its output is the status of the recognized object. In this ap-
plication, an RGB-D Kinect camera takes pictures of the pizza dough on a
plate. Afterwards, this component separates the area of the pizza dough and
the background. It reconstructs the 3D shape of the pizza dough based on
the 2D image data and some additional information about the pizza dough.
Finally, this object recognition module describes the shape of the pizza dough
through numerical data. This description indicates the current status of the
pizza dough.

The second component, which is the one in charge of planning the actions
on the deformable object, gest the output of the previous component, the
desired final shape of the dough, and some additional information ( i.e., the



228 J.-T. Kim, F. Ruggiero, V. Lippiello, B. Siciliano

transform look-up-table, which will be illustrated in the following sections).
Its output is the planned sequence of actions on the deformable object. In
this application, the current shape of the pizza dough, the desired shape of
the pizza dough, and information about the dough deformation (i.e., how a
particular action of the rolling pin deforms the object into another shape)
are given. Then, this component finds out the best sequence of actions of the
rolling pin to get the desired shape.

Similarly, the third component gets the output of the previous one and
generates a continuous motion of the tool to realize the desired actions on the
deformable object. Each action from the previous component is disconnected
from the other. Therefore, it is necessary to generate a smooth continuous
motion, which is the output of this module.

Finally, the last component is in charge of the robot planning to realize the
output of the previous component. Considering the kinematic information
of the employed robot and all the constraints, this component generates a
smooth motion sequence for the robot to suitably moving the tool as specified
by the previous component.

Each component is explained in detail wtihin the sequel sections.

9.4 Pizza dough recognition

The pizza dough recognition component consists of two procedures: (i) digital
image processing for raw data from the sensor device, and (ii) how to describe
the status of the flatted deformable object.

9.4.1 Image processing for sensor data

The perception procedure for a deformable object roughly consists of two
parts in this application; one is the image processing for the camera sensor
data, and the other is the representation of the status of the pizza dough. The
perception method depends highly on the application; therefore, in this case,
we analyse the stretching action of a pizza dough using the RoDyMan robot
(Fig. 9.3a), and the recognition procedure naturally depends on a specific
detector for the pizza dough. To reduce the di�culties of the perception
based on image sensor data, some artificial restrictions are applied: restriction
to the workspace by defining the boundary area (i.e., a plain rectangular
plate) and the usage of a particular coloured deformable object (i.e., the blue
colour) contrasted to the background colour (i.e., white colour). However,
these restrictions are not critical but can be addressed with additional image
processing.
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With the help of the absolute position information of at least three corner
markers in a rectangular plate and the kinematic information provided by
the RoDyMan robot, it is not di�cult to induce the frame transformation
between a point in a given 2D camera image and the corresponding absolute
position in the world frame [125]. In the carried out experiments, QR codes
are placed at each corner of the rectangular plate, and then using an image
matching with SIFT [179] the corner points were detected. Other feature
detectors like the SURF [20] or the FAST [262] are also available. In order
to easier detection of the corners, AR codes and the corresponding code
detectors (i.e., ARToolkit [149]) can be used. The primary purpose of corner
detection is to remove the dough plate’s outlier and induce a transformation
T from a 2D view image to a top-down viewed 2D space.

For the initial pizza dough, assuming that the ball- or bell-shaped pizza
dough is symmetric to the vertical rotation axis, the reconstruction of the
3D shape is obtainable with partial camera views or depth sensors [28, 26].
Suppose the pizza dough is shallow after being pushed by a rolling pin so that
the height di↵erence is ignorable. In that case, the transformation T can be
directly applied to the detected pizza dough as well as the plate. However,
the initial pizza dough is more like a ball- or bell-shaped than a shallow disk.
We do not commit much error in seeing the pizza dough as a 2D figure on a
plate with uniform thickness: indeed, the more shallow the thickness of the
dough, the minor error it occurs regarding a cylinder shape.

An example of the image processing steps to identify the pizza dough on
the plate is given in Fig. 9.3b-g. With reference to the labels in the figure, the
steps now briefly described. b) The raw image data from the camera mounted
on the head of the RoDyMan robot is shown. With default information, we
assume that the camera’s view covers the whole area of the dough plate. c)
There are four corner marks on the white dough plate. After detecting the
marks, the area of the dough plate is outlined with blue lines. d) The outer
area of the dough plate is removed from the image. e) Within the dough plate,
the dough clay (the green object) is detected, and the outline is extracted
through an edge detector [112], like the Canny edge detector [47]. f) The
raw 2D camera image is deformed into the orthogonal top-down view with
predefined width and height. g) The deformed outline of the detected pizza
dough is finally obtained.

9.4.2 Description for a status of a pizza dough

Pizza dough has various shapes. However, according to general experiences
and our experiments in making a pizza, there is no problem assuming that
the pizza dough’s shape is convex. Hence, we can define the state of the
pizza dough as the set of distances between the center of the dough and its
boundary and the related tickness
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 9.3: Detection of the pizza dough on a white rectangular plate.
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Fig. 9.4: Feature matching on the corners of the plate through the SURF
method. On the left, the template image. On the right, the camera image.
The green lines indicate the boundary of the detected plate.

CX :

⇢
kx� x0k

h

�
2 R2 : x 2 @S

�
. (9.1)

The dough center is intended as the geometric center of its shape. During
the implementation, we discretized the configuration as a set of angle-equally
sampled distances (see Fig. 9.5a) and vectorized them clock-wisely. The his-
togram of the vectorized configuration is shown in Fig. 9.5b.

When the dough shape is deformed through the action of the rolling pin,
the centre position and the rotated angle of the dough are less important.
Indeed, the relative angle between the rolling pin and the pizza dough would
a↵ect the deformation. To get a rotation-invariant configuration, the order
of the histogram elements is rearranged so that the longest distance vector
is the first one in the set (see Fig. 9.5c). This method has been frequently
used in object recognition algorithms of image processing, e.g., SIFT [180],
SURF [20], MSER [193], FAST [262], and BRISK [167].

An extended configuration space CY is introduced to include the position
of the centre and the angle between the longest distance vector (the first one
in the rearranged histogram) and the x-axis of the frame D

CY :

8
>><

>>:

2

664

�
cx
cy
✓

3

775 2 R5 : � 2 Cx

9
>>=

>>;
. (9.2)

It can be seen in Fig. 9.5d how the reconstructed shape by the extended
configuration CY is similar to the original shape. The original configuration
space CX of the pizza dough is a subspace of the extended configuration space
CY : their relation is drawn in Fig. 9.6. Through space projection, the extended
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(a) Deformable object model projected
onto the 2D space.

(b) Histogram of the distance from the de-
formable object’s centre.

(c) Rearranged histogram for the longest
one to be the first bin following by sequel
bins.

(d) Reconstructed shape from the config-
uration y.

Fig. 9.5: Configuration for a dough state. The red radial lines in (a) indicate
equal-angle sampled distance from the centre of the pizza dough shape to
the boundary. Blue line is the longest distance from the centre. The sampled
distances are ordered clock-wisely.

configuration space CY can be submerged into the original configuration space
CX , that is, CY /I = CX where I = {cx = 0, cy = 0, ✓ = 0}.
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Fig. 9.6: The configuration space CX and its extended configuration space
CY .

9.5 Construction of a planer for pizza dough stretching

Given a generic configuration space C, a initial status qI 2 C, and a final
status qG 2 C, the planner finds the sequence of intermediate status

qI ! q1 ! · · · ! qn�1 ! qG, (9.3)

to reach qG from qI , and where q1, · · · , qn�1 2 C. Each status is referred to
as a configuration q in a given configuration space C.

A way to find such a sequence of intermediate configurations is to associate
to each of them a cost value relative to qG. Let V (qi) > 0 be a cost value
related to the distance from qi 2 C to qG, then a gradient descent method
might be used to find the sequence of interemdiate configurations such that

V (qI) � V (q1) � · · · � V (qn�1) � V (qG) = 0. (9.4)

A movement from one configuration to another is called a transition T .
The transition occurs directly or indirectly through an action ↵ 2 A, where A
is the set of admissible actions. Therefore, we can move from a configuration
q 2 C to a configuration q0 2 C as

q ! q0 = T (q,↵). (9.5)

The robotic system must execute the action ↵ through a proper control de-
sign, taking into account possible errors during the execution.

Concerning the pizza stretching application, the configuration of the pizza
dough is given by the sets CX and CY . The cost function V (·), the actions
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↵ 2 A and the transitions T to achieve the sough task are explained in the
following.

9.5.1 Cost value function

In this application, the cost value function V (·) is defined as how the shape
of the pizza in the configuration q is di↵erent from the shape of the pizza in
the desired configuration qG. Hence, the more similar the shape of q is to qG,
the smaller the cost value V is.

A comparison between two 3D objects is typically made by checking the
respective volumes. However, the comparison can be simplified in this appli-
cation by projecting the two 3D volumes into a 2D plane. In fact, the target
object has a shallow disk, and the error between the approximated cylinder
shape and the original dough shape decreases as deformations of rolling pin
actions are made.

The comparison is made by calculating the ratio of the occupied 2D area
of the current dough shape over the 2D area of the target one while ignoring
the space out of the target 2D area (see Fig. 9.7). The areas can be measured
by counting the occupied grid cells after discretizing the 2D plate.

The designed cost value function for this application is

V (q) = 1� area(q)

area(qG)
, (9.6)

where q, qG 2 CY are the current and the target configurations of the pizza
dough shape, respectively. The operator to compute the area is defined as

area(q) =
X

ij

occ(q, i, j),

where i and j are the indexes of discretized 2D space, and the occupancy
function occ(q, i, j) is defined as

occ(q, i, j) =

8
><

>:

1 if (i, j) 2 A(q) \A(qG)

� if (i, j) 2 A(q) \ ¬A(qG)

0 otherwise

, (9.7)

where A(q) is the part of the plate occupied by the dough in the configuration
q, ¬A(q) is the complement of A(q), and  > 0 is a penalty weight. In
particular,  = 0 means that we do not care if the current shape of the
pizza dough is outside the target one, while  � 0 indicates that we strongly
penalize the case in which the current dough is outside the target one even
partially. As it is built, the cost function assumes values in the range [0, 1].
When the cost function is zero, the current dough shape covers all the target
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Fig. 9.7: An comparison between the current shape (red line) and the target
shape (black line).

one. In practice, we verified that it is di�cult and ine�cient to cover the
target shape area completely: we thus recommend saturating to zero the cost
function when its value is under 0.1, corresponding to the fact that about the
90% of the target shape area is covered.

9.5.2 Actions for a deformable object

There are a lot of possible actions to modify a pizza dough employing a
rolling pin. For simplicity, the available actions in this application are lim-
ited. First, slanted or downing movements are prohibited. Besides, an action
cannot change its angle during the movement. Then, the distance between
the rolling pin and the plate is constant during all the movement. Finally,
the rolling pin’s movement is always done in contact with the dough.
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Following the above constraints, the action set is defined as follows

A :

⇢
�
�

�
2 R2

�
, (9.8)

where � > 0 is the height between the rolling pin and the table and � 2
[0�, . . . , 180�] is the angle between the longest axis of the pizza dough and
the x-axis in D. Because the rolling pin’s forward and backward movements
are not discriminated in this application, the provided interval for � is enough.
During simulations, the action set A consisting of a height � and an angle �
was discretized. The number of heights and angles used in our simulations
are provided in Section 9.8.

Notably, the deformations caused by the actions defined above are relative
to the local configuration space CX and not the global configuration space
CY . This means that the deformation of the pizza after an action ↵ 2 A is
not a↵ected by the global status y 2 CY . However, it depends on � 2 CX and
the relative angle between the pizza dough and the rolling pin.

9.5.3 Transition originated from an action

A transition changes the status of the dough to another thanks to an action.
The transition function T : CY ⇥A ! CY can be defined as

y0 = T (y,↵), (9.9)

where y 2 CY is the current state of the pizza dough and y0 2 CY is the one
obtained after the execution of the action ↵ 2 A.

As previously mentioned, the deformation of the pizza dough through an
action is more related to the relative angle between the rolling pin and the
longest axis rather than the absolute pose of the pizza dough. Therefore, the
equation (9.9) can be rewritten as

y0 = T (y,↵)

= T (
⇥
xT 0T

3

⇤T
,
⇥
� �� ✓

⇤T
) +

⇥
0T

2 xT

0 ✓
⇤T

.
(9.10)

The new action ↵0 =
⇥
� �� ✓

⇤T
is already included within A; hence, there

is no change in the size of the action set A. On the other hand, the state⇥
xT 0T

3

⇤T
might be interpreted as adimension reduction by projection (Fig.

9.6). In this way, the domain of the transition function T can be drastically
reduced.

In the next section, how to generate such transitions will be explained.
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9.5.4 LUT method

Even though the deformation of an object due to an action is very well
simulated through the SPH models (see Chapter 3.1), the problem is the
computation time for each transition from one state to another state. The
time depends on the resolution of the deformable object model and other
conditions. In this chapter, the carried-out simulations took several minutes
to hours for one transition. Considering that a planner requires at least several
dozens, thousands, or much more transitions, this object model is not suitable
for real-time or short-time planning.

LUT method is well-known for overcoming this computing-time problem.
Possible transitions are calculated previously o↵-line, and then only the re-
sults are recorded into a transition database. Working online, the planner
looks for a suitable transition in the database and uses it.

As explained in the previous subsection 9.5.3, a transition T is independent
from the position and rotation angle of the current state y 2 CY . Therefore,
LUT contains only transitions from a state � 2 CX at centre x0 = 02 and
zero rotation angle, ✓ = 0, with actions ↵ 2 A.

A transition space is continuous, but it is infeasible to generate and store all
possible transitions. Therefore, discretizing the transition space is necessary,
which requires storing selected transitions into a database and a method
to find a proper transition within it. The conventional method to find a
proper transition is to look for the most similar one and use it [97], or to
use an interpolating method to estimate unknown transitions from a given
state � 2 CX with the neighbour transitions. In the following subsections, we
investigate how to find similar transitions into the database and interpolating
them.

9.5.4.1 Similarity

In order to find similar transitions within the database, similarity measure
functions between two states �1,�2 2 CX and between two actions ↵1,↵2 2
A are needed. We use the diagonal Mahalanobis distance simX : CX ⇥ CX !
R�0 as a function for the pizza dough configurations, whose definition is given
below

simX(�1,�2) =
r
k�1 � �2kS�1

X

, (9.11)

where SX = diag

✓
1

1

�

�◆
2 R2⇥2, with � > 1. We use the function simA :

A⇥A ! R�0 for the actions as

simA(↵1,↵2) =
r

k↵1 �↵2k
S�1

A

, (9.12)
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where SA = diag

✓
1

�
1

�◆
2 R2⇥2, with � > 1.

9.5.4.2 Interpolation

Like the basic idea of SPH formation in subsection 3.2.2, we find the neigh-
bour transitions within a specific distance, and then we interpolate them by
substituting the transition function T in (9.9) with a new transition function
T : CY ⇥A ! CY as

y0 = T (y,↵) =

P
i
T a(yi

,↵)W (simX(�̄, �̄
i
), hy)P

i
W (simX(�̄, �̄

i
), hy)

(9.13)

and

T a(y,↵) =

P
j
T (y,↵j)W (simA(↵,↵j), ha)P

j
W (simA(↵,↵j), ha)

, (9.14)

where the kernel functionW : R�0⇥R+ ! R�0 and the kernel ranges hy, ha 2
R have been used. The denominator of the previous expressions is used for
normalization purposes, similarly to the SPH formation in subsection 3.2.2.

Notice that y =
⇥
�̄T 0T

3

⇤T
.

After execution of the action by the robot, if the deformed status is the
same or similar to the expected one, then the following action will be executed
sequentially. Otherwise, a new step of the planner is required.

9.6 Path generation for the rolling pin

One of the particular features in the proposed planning framework is the in-
dependent planning for the tool itself. In contrast, most of the other planning
frameworks integrate the planning of the tool and the planning of the robot
manipulator. There are benefits and drawbacks to this planning separation.
The separation makes the robot manipulation planning manageable. At the
same time, there is a need to treat the infeasible action sequences that are a
problem when the robot manipulator generates its action sequences to follow
the trajectory of the tool. In this application, the preference of simplicity of
the manipulation planning makes us separate the planning for a tool from
the planning for the robot manipulator.

From the previous sections, the actions to stretch the dough towards the
desired shape are generated. A possible sequence of actions is something like:
stretch forward first, then stretch 30�, and so on, all with specified heights
from the plate. There are two issues for generating a proper action sequence
for the rolling pin: the generation of the action itself (called primitive action)
and the connection to the following action (called connecting action).
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The primitive action is direct and intuitive. We must keep the desired
height of the rolling pin from the plate and try to act at the specified angle by
passing through the dough’s center. The connecting action is instead artificial
and specific to this application. First, two proper poses for the rolling pin are
defined, namely the ready pose and the final pose. Then, a routine is repeated,
starting with a connecting action from the initial pose to the ready pose until
the generated action is completed. The routine steps are as follows: (a) doing
a connecting action from the ready pose to the initial pose of a primitive
action; (b) doing the primitive action; (c) doing a connecting action from
the final pose of the primitive action to the defined final pose; (d) doing the
connecting action from the defined final pose to the ready pose. This routine
is capable of covering all generated actions from the previous dough planning.

Fig. 9.8: Example of rolling-pin planning for two given actions on the dough.

There is an example of this process in Fig. 9.8 with two given actions
from the previous dough planning, that is, a zero degree movement and a 60�

movement. The generated action sequence consists of 1) a connecting action
from the initial pose to the ready pose; 2) a connecting action from the ready
pose to the initial pose of the zero-degree movement; 3) the primitive action
related to the zero-degree movement; 4) a connecting action from the final
pose of the zero-degree action to the final pose; 5) a connecting action from
the final pose to the ready-pose; 6) a connecting action from the ready pose
to the initial pose of the 60� movement; 7) the primitive action related to
the 60� movement; 8) a connecting action from the final pose of the 60�

movement to the final pose; 9) a connecting action from the final pose to the
ready pose. The yellow lines indicate the trajectories of two holding points
of the rolling pin while doing a primitive action.

The left figure in Fig 9.9 shows the trajectory of the steps above from 1 to
5. The right figure in Fig. 9.9 shows the trajectory of the steps above from
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Fig. 9.9: Example trajectories of two holding points of a rolling pin for a
given action on the dough. On the left, a zero-degree action. On the right, a
60� action.The yellow and red lines indicate the trajectories of the primitive
and the connecting actions, respectively.

6 to 9, in which the yellow lines and the red lines are those of the primitive
and connecting actions, respectively.

9.7 Inverse kinematics for the RoDyMan robot

RoDyMan is the employed robot platform that consists of a mobile base, a
2-DoFs torso, a 2-DoFs neck, and two 7-DoFs arms. This process step aims to
make the arms grasp the rolling pin properly and solve the inverse kinematics
problem to plan the joint movements.

Many inverse kinematics algorithms are well established in the literature,
as those using the LM algorithm or the damping least-squares method [284].
The employed method follows the closed-loop inverse kinematics algorithm
with redundancy management explained in [284]. Redundancy is exploited
to avoid unnatural postures of the robot.

Fig. 9.10 shows the ready pose of RoDyMan before and after an action.
Fig. 9.10b shows the unnatural behaviour that can be avoided through a
proper redundancy management, as shows in Fig. 9.11. Details are omitted
here for brevity since this part is well established in the literature and does
not bring any new insight into the problem faced by this chapter.
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Fig. 9.10: Ready pose of RoDyMan before and after an action.

Fig. 9.11: Improved ready pose of RoDyMan before and after an action thanks
to the redundancy management.

9.8 Simulations

For simulation purposes, the employed system consists of an Intel®Core™
i7-6500U CPU@2.50 GHz, Memory 8.0 GB with Windows®10 x64 operat-
ing system. We used the Microsoft Foundation Class (MFC) library of Mi-
crosoft®, the Qt library1, Boost2, Eigen3, and OpenCV4 for 2D graphic or
OpenSceneGraph5 for 3D graphic libraries based on C++11 programming
language. Additionally, Houdini™ of SideFX®and Blender™ were used to re-

1 https://www.qt.io
2 https://www.boost.org
3 http://eigen.tuxfamily.org
4 https://opencv.org
5 http://www.openscenegraph.org
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construct the mesh from particles and for graphical rendering, respectively.
3D reconstruction is done with VisualSFM6 and MeshLab7.

9.8.1 Modelling of a deformable object

Even though a model for a deformable object like a pizza dough is designed
in Chapter 3.1, the deformable object’s properties like viscosity and elas-
ticity vary case by case. Therefore, there is the need to tuning the model’s
parameters to fit the target object. Figure 9.12 shows how to measure a
real deformable object. During preliminary experiments, a toy clay was used
instead of pizza dough for convenience.

The process during the preliminary experiments has been carried out as
follows. At first, the measure of the deformable object’s surface and the recon-
struction of its shape in 3D virtual space, at the initial and deformed statuses,
have been carried out. Afterwards, an SPH-based object model is made fol-
lowing the reconstructed shape of the initial and deformed object. Finally, by
applying the various actions on the SPH-based object model for the initial
object, the best matching parameters for the model are found, which gener-
ates the SPH-based object model that is close to the reconstructed shape of
the deformed object.

The reconstruction of a deformable object in the 3D virtual space at the
initial status and the deformed status, respectively, are shown in Fig. 9.12
and Fig. 9.13. The pictures in Fig. 9.12 deals with a ball shape, representing
the pizza dough before any deformation. The pictures in Fig. 9.12 show a
disk shape after the deformation actuated by the rolling pin. To measure the
shape of the object, a structure from motion method is used, which gathers
some pictures (Fig. 9.12a and Fig. 9.13a) with various views and generates
a 3D model (Fig. 9.12b and Fig. 9.13b). Usually, the generated 3D model is
very rough and too complex. Hence, it needs post-processing to smooth the
surface and remove the outliers. A simpler ball mesh-model (Fig. 9.12c) and
cylinder mesh-model (Fig. 9.13c) are used to match the generated 3D model
as close as possible, and the final reconstructed 3D model (Fig. 9.12d and
Fig. 9.13d) are fixed, respectively.

The process of finding the best matching parameters for the deformable
object model is shown in Fig. 9.14. Various deformed shapes are generated
with various parameters: among them, we must find the best matching shape
and its parameter. The matching process is done o✏ine.

6 http://ccwu.me/vsfm/
7 http://www.meshlab.net/
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(a) (b)

(c) (d)

Fig. 9.12: Measuring of a real dough shape at initial status. (a) pictures
with various views for real dough; (b) 3D reconstruction; (c) matching of the
reconstructed shapes with a sphere; (d,h) the final matched shapes.

9.8.2 Pizza dough transition look-up-table

The transition LUT is used to speed up the planning algorithm, which is gen-
erated using various statuses of the pizza dough and various actions. However,
it is not easy, and it needs much time to have experiments with real pizza
dough. Therefore, using the deformable object model obtained before is more
e�cient than a real deformable object.

The previous section defines the model for a deformable object and its
parameters obtained from real experiments. We had experiments with SPH
particle radius of 1.25 ·10�3 m, a pizza dough density of 1.276 kg/m3, a solid
density of 200 · 103 kg/m3, an IISPH [136] for an incompressible fluid, and a
viscosity coe�cient of 250 kg/ms. Base on this model, the transition LUT is
made by simulating the deformation from several configurations of the pizza
dough and with various actions on the object. In particular, the action set
A consists of seven heights, from 8 · 10�3 m to 20 · 10�3 m spanned each
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(a) (b)

(c) (d)

Fig. 9.13: Measuring of a real dough shape at initial status. (a) pictures
with various views for real dough; (b) 3D reconstruction; (c) matching of the
reconstructed shapes with a disk; (d,h) the final matched shapes.

2 · 10�3 m, and eight directions, from zero degrees to 180�, spanned each 45�

and considering both forward and backward motions.
A simulation is shown in Fig. 9.15 where the pizza dough is represented by

the red particles and the rolling pin by the green ones. An example where the
pizza dough is stretched is depicted in Fig. 9.16 and Fig. 9.17. The former
shows the transition LUT for sequential statuses of the pizza dough with
height and angular table, while the latter shows the occupancy of the pizza
dough for each status.

9.9 Discussion and conclusion

This chapter explained a planning method to stretch a pizza dough with a
rolling pin actuated by a robotic system. Base on the perception chapters,
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Fig. 9.14: Schematic diagram for finding the parameters of the deformable
object model. ↵ is just an example of a parameter for a SPH-based model:
name and values are di↵erent depending on the model.

the deformable object is modelled, and the deformation information is used
to plan the stretching actions on the pizza dough to reach the desired shape.
An object recognition algorithm, a method to model deformable objects with
high viscosity, the definition of the status of the pizza dough, the definition
of the actions through the rolling pin, an inverse kinematics algorithm for
the robot have been integrated to achieve the sought goal. Experiments were
carried out to identify the parameters of the pizza dough. The stretching
actions were planned o✏ine thanks to a LUT database. Future experiments
will definitely validate the proposed approach.
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Fig. 9.15: SPH-based transition simulation for the pizza dough (red object)
with a rolling pin (grey object).

(a) (b) (c)

Fig. 9.16: LUT method. The x-axis and the y-axis indicate the angle and the
height of a rolling pin motion, respectively. The white colour means lower
score, while the darker blue colour means higher score. Red ball is the highest
score action.
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(a) Start shape of a dough placed in center(b) The shape after applying the highest
scored action in Fig. 9.15a

(c) The shape after applying the highest
scored action in Fig. 9.15b

(d) The shape after applying the highest
scored action in Fig. 9.15c

Fig. 9.17: Shapes of the current dough (red) and its target (black). The red
line indicates the angle of the first bin in the dough’s state.
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178. B.A. Lloyd, G. Székely, and M. Harders. Identification of spring parameters for
deformable object simulation. IEEE Transactions on Visualization and Computer
Graphics, 13(5):1081–1094, 2007.

179. D.G. Lowe. Object recognition from local scale-invariant features. In International
Conference on Computer Vision, pages 1150–1157, 1999.

180. D.G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

181. L.B. Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical
Journal, 82:1013–1024, 1977.



258 References

182. K.M. Lynch and M.T. Mason. Dynamic nonprehensile manipulation: Controllability,
planning, and experiments. International Journal of Robotics Research, 18(1):64–92,
1999.

183. K.M. Lynch and F.C. Park. Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, first edition, 2017.

184. K.M. Lynch, N. Shiroma, H. Arai, and K. Tanie. The roles of shape and motion in dy-
namic manipulation: The butterfly example. In 1998 IEEE International Conference
on Robotics and Automation, pages 1958–1963, 1998.

185. M. Macklin and M. Müller. Position based fluids. ACM Transaction on Graphics,
32(4):104:1–104:12, 2013.

186. E. Magaña Barajas, B. Ramı́rez-Wong, P.I. Torres-Chávez, and I. Morales-Rosas. Use
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