Chapter 1

Passivity-Based Control Design and
Experiments for a Rolling-Balancing System

Alejandro Donaire, Martin Crespo, Fabio Ruggiero, Vincenzo Lippiello and
Bruno Siciliano

Key words: Rolling-ballancing System, Nonlinear Control, Passivity-based Con-
trol, Integral Action.

Abstract In this chapter we present the design and implementation of a robust
passivity-based controller for a rolling-balancing system know as the disk-on-disk.
The control design aims to asymptotically stabilize the desired equilibrium of the
disk-on-disk by shaping the energy function of the system and injecting damping.
This first design is further augmented by the addition of a nonlinear PID controller
to compensate for disturbances. We incorporate in the nonlinear PID the possibil-
ity of stabilizing either a set-point of angular positions of the disks or their angular
velocities while keeping the balance of the system. Although the underactuation
feature of the system and the disturbances hampers the control design, we show
that the passivity-based framework offers the necessary tools to prove the desired
stability properties of the close loop. Finally, we evaluate the practical applicabil-
ity of the control design by implementing the controller on a real hardware for the
disk-on-disk system and asses the performance of the control system.
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1.1 INTRODUCTION

Control theory has provided a rich variety of methods for control design of nonlinear
systems [5, 6]. In the context of robotics and mechanical systems, nonlinear methods
have been widely used for control design (see e.g. [17, 18]). A class of mechanical
systems posing a particularly challenging control problem is that of underactuated
mechanical systems. Underactuation refers to the fact that number of the inputs is
smaller than the number of the degrees of freedom.

Passivity-based control (PBC) has shown to be a successful technique for control
design of underactuated systems [11]. A standard constructive method for stabiliza-
tion of mechanical system is the so-called interconnection and damping assignment
(IDA) [12]. This technique is based on Lagrange-Dirichlet result on stability of me-
chanical systems, which states that an isolated minimum of the potential energy
is Lyapunov stable (see Theorem 3.1 in [9] for further details). The basic idea of
IDA-PBC is to shape the energy of the system and assign a minimum at the desired
equilibrium by using feedback measurements and the control input. A further injec-
tion of damping is needed to ensure asymptotic stability [13]. To stabilize a desired
equilibrium for fully actuated systems, only the potential energy of the system is
needed to be shaped. However, both the potential and kinetic energies have to be
shaped to stabilize underactuated systems, a procedure known as total energy shap-
ing. Although passivity-based controllers are known to be robust against parameter
uncertainties, the action of external disturbances can deteriorate the performance of
the closed loop or, even worse, produce instabilities. To address this problem, a clas-
sical addition of control actions has been proposed in [2, 10]. This integral action
design has been specialised for fully actuated and underactuated mechanical system
by [14] and [3], respectively.

In this work, we consider the control problem of the disk-on-disk (DoD), which
is an underactuted rolling-balancing system [16]. The DoD is a case study of non-
prehensile manipulation and has been used as testbed for control designs in this
context [4, 16]. In addition to the stabilization problems of angular position set-
points or tracking constant angular speed while keeping balance, we also consider
input disturbances, which complicate the design. Previous works have considered
the stabilization problem of the DoD using exact-feedback linearization [8], and en-
ergy shaping [4], but none of these works consider disturbances in the design. The
work in [15] considers constant speed tracking but disturbances were no consid-
ered. In our work, we explicitly consider the disturbances and we design a robust
IDA-PBC controller following the approach proposed by [3]. This controller results
in a classical IDA-PBC inner controller plus a nonlinear PID-type outer-loop con-
troller, which rejects the disturbance. In addition, we implement the control laws in
a real hardware for the disk-on-disk prototype, and run a set of experiments. These
experiments allow assessing the performance of the controllers and evaluating the
practical applicability of the methods provided in the literature of control theory.

The rest of the chapter is organized as follows: Section 1.2 reviews the basic
background on port-Hamiltonian framework and IDA-PBC. The control design for
the disk-on-disk is developed in Section 1.3. Section 1.4 presents simulations and
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experiment results, respectively. Finally, the chapter is wrapped-up with the conclu-
sions.

Caveat. This chapter is an extended version of the conference paper presented at
ICINCO 2016 [1].

1.2 PORT-HAMILTONIAN SYSTEMS

1.2.1 Hamiltonian Models

A broad class of mechanical systems can be described by the Euler-Lagrange equa-
tions of motion

o Ve (4.0)] - Vo (4.9) = Gl (L.

where g € R" is the generalized position, u the input force, G : R" — R"*™ is the
input matrix and .% the Lagrangian, which as the following form

#(9.4)= 54" M(g)i V().

where V : R" — R is the potential energy and M : R" — R"*" is the mass matrix
and satisfies the condition M(q) = M " (¢) > 0. Applying the Legendre transforma-
tion and defining the generalized momentum p = M(q)q [7], we can express the
dynamics (1.1) in the Hamiltonian form as follows

q OVan In VqH:| |:On><m:|
| = + u 1.2
M [—1,, Onxn} [VpH G(q) (12)
where p € R"” and H : R™" — R is the total energy system given as

1
H(q,p)= EPTM’I(CI)pﬂLV(q)- (1.3)

1.2.2 Energy Shaping and Damping Assignment

The stabilization problem of the system (1.2) using IDA-PBC is to find a control in-
put u such that the dynamics of the closed loop can be written as a port-Hamiltonian
system as follows

p ~MM~ J,—R] | |VpHa
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where the matrices J>(q,p) = J; (¢,p) and Ry(q) = G'(q)K,G(q) represent the
desired interconnection and damping structures, respectively, and K, > 0 is a free
symmetric matrix to be chosen. The function H; : R* — R is the desired energy in
closed loop which has the form

1
Ha(q,p) = 50" M ' (@)p+Va(q) (1.5)

where M;(q) = M (q) > 0 and V,(g) are the desired mass matrix and the desired
potential energy of the closed loop, respectively. In addition, if ¢* is a minimum of
the potential energy, then the desired energy H, qualifies as a Lyapunov candidate
function, and its time derivative along the solutions of (1.4) results as follows

Hy=-p'M;'G"K,GM;'p <0, (1.6)

which ensures that ¢* is a stable equilibrium of the closed-loop system. Moreover,
asymptotic stability follows if the signal y; = GMd_1 p is detectable [12].

The classical approach to design an IDA-PBC controller is to compute the control
in two steps. First, the energy shaping control ugs, and second the damping injection
upz. Then, the control input is obtained as u = ugs + upr. The energy shaping con-
troller is computed by matching the open dynamics (1.2) and the desired closed loop
(1.4) assuming R; = 0. This procedure results in the following matching equation

0n><n I, VqH + 0n><m Yo = On><n MﬁlMd Vqu (1 7)
Iy Opxn| |V H G(q)|"**  |-MM~' ] V,Hy |’ :
which should be solve for ugs. For the nontrivial case of underactuated systems,

where G(g) is full column rank but non invertible matrix, the solution of (1.7) can
be found by solving the following two equations:

o Kinetic-energy matching equation (KE-ME)
GL{V,] [pTM*‘p} ~ MMy, [pTM;lp} + 212M[;‘p} —0 (18
e Potential-energy matching equation (PE-ME)
Gi{qu—MdM*‘qud} —0, (1.9)

where G+ € R("=m)xn ig the full rank left annihilator of G, i.e. G- G = 0. Then, the
energy shaping control law is given by

uss = (G'G)1GT [VqH—MdM’IVqu—i—JszHd}. (1.10)
The second step in the design is the damping injection, which is given by the control

law
upr = —K,G'M; ' p. (1.11)
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As discussed by [12], the injection of damping together with the detectability con-
dition are needed for asymptotic stability.

1.3 CONTROL DESIGN FOR THE DISK-ON-DISK

1.3.1 Dynamic Model

The DoD is a rolling-balancing system shown in Figure 1.1. Disk 1 is actuated by
a controlled torque whilst Disk 2 is non-actuated (see [16] for a detailed modelling
development). We consider two control objectives:

0.1 Stabilization of the Disk 2 at the upright position while driving the angle of
Disk 1 to a target angular reference.

0.2 Tracking of constant angular velocities reference for Disk 1 while keeping
the Disk 2 at the upright position.

Disk 2
m07 IO

Fig. 1.1 A schematic of the
DoD system.

The dynamic model of the DoD can be described by the Lagrangian equations in
coordinates (6, ), where 0 is the angle of Disk 1, and ¢ is the deviation angle of
Disk 2 respect to the upright position. The Langrangian for the DoD is given by

o~ Lra T My M|,
Z(q.9)=5[6 w}T[M; M;j [0 ¢]-V(g) (1.12)

where
V(q) = Vo cos(¢)
with Vy = m,g(r, + ;). The function V represents the potential energy and M is the
mass matrix whose entries are
Mll = r%(m(, +mh)
My =My = —mory(ro+1p)
Mo = 2m,(ro+14)*
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Equivalently, as explained in Section 1.2, the DoD model can be written in the
Hamiltonian form as follows

gl [0 11[v,H] . [0
)= ] o] [l (1
where the coordinates ¢ = [0 @] T

[1 O] T. The Hamiltonian function is

, the momenta p = M¢ and the input matrix G =
1 _
H(g,p)=p M ~'p+V(q).

1.3.2 Energy Shaping and Damping Assignment Control

The objective in this section is to design a IDA-PBC controller for the DoD system
that stabilises the point ¢* = (6*, 0), where 6* is the desired equilibrium for Disk 1
angle. This control objective corresponde to the task Q.1 describe in section 1.3.1.
To solve this problem we design a controller using energy shaping and damping
injection as described in Section 1.2. That is, we search for the function V; and the
matrices M, and J; that solve the KE-ME and PE-ME, (1.8) and (1.9) respectively.
Thus, the energy shaping control is obtained from (1.10) and the damping injection
control from (1.11).

Since the mass matrix of the DoD is constant and does not depend on the coor-
dinates g, we select M, as a constant matrix as follows

Ni1 Niz
M, =
d {Nu N
where Np1, N1z and Ny, are free constants parameters. To simplify the notation, we
note
-1 __|a b
=[]

Then, the PE-ME (1.9) is as follows

[01] { [VO Si?l((p)} + [Z ﬂ [gzgﬂ } =0 (1.14)

Vo Sll’l((P) +cVoV;+d V(PVd =0.

We solve the partial differential equation (1.14) for V;, and we obtain, using a sym-
bolic software (e.g. Mathematica, Maple), a solution as follows

1 k : 2
Va(g) = aVocos((p)JrEz (Gfé(pfkl) (1.15)
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where k| and k; are free constant parameters to be chosen to assign a minimum at
the desired equilibrium.

From the previous selection of My, it is clear that the KE-ME (1.8) is satisfied by
choosing J>(g, p) = 0. In addition, we need to ensure that M, > 0 and that V; has an
isolated minimum at the desired equilibrium g*.

The minimum of V; is assigned by requiring that the Jaccobian and Hessian
evaluated at ¢* are zero and positive definite respectively. Then, we compute

o ke (60— 0 k)
D V\Vilq)| _.=0s =0

q=q vy . X

|sin(p)— 5 (0 50k)) |,
which is satisfied if k; = 6*.
D) V2V,(q)|,_ . >0& K kg 2} >0
q q=q* |—k2§ _TVOcos((pH—kz (9) —
which is satisfied provided that k; > 0 and d < 0 (equivalently NjoM|, —
NopoMy| > 0).

The positive definiteness of My is ensured if Nyj; > 0 and N11Npp — N122 > 0.

Notice that effectively, the potential energy has a minimum at the desired equi-
librium (6%, ¢*) = (0,0) as shown in Figure 1.2, where we have used the values of
the parameters as in Section 1.4.1 for illustrative purpose.

Fig. 1.2 Desired potential energy.

Finally, the control law is computed from (1.10) and (1.11) as follows

b ad — bc c . C .
u:ues+uDI:—dV(pV—k2( d >(9—d(p—6*>—dec<6—d(p)
(1.16)

M11M22*M%2

where ¢ =
N1 1Np—N?,

and the free parameters Njj, N2, N2, k» and K, should
satisfy
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N1 >0, k>0, K,>0,
N11N22 —N122 > 0,
NioMiz — N»xMy; > 0.

Thus, the dynamics of the DoD system (1.13) in closed loop with the controller
(1.16) can be written in the Hamiltonian form

. ~1
qp | O M Mg ||\ VeHy (1.17)
P ~MyM~' —GK,G" | |V,Hy
To analyse the stability of the closed loop (1.17), we consider the desired Hamilto-
nian in (1.5) as a Lyapunov function and we compute its time derivative as follows

Hy(q,p)=p ' M7 p+4"Va(q)
= pTM7! (—MdM’] V, - GK,G M7’ p) +dVal(g)
=—p'M;'GK,G'M;'p<o0,

which ensures stability of the desired equilibrium. Asymptotic stability follows from
LaSalle’s invariance principle [6], or equivalently from detectability of the signal
ya=K,G"M;'p[19].

1.3.3 Effect of Input Disturbances

Now, we consider the presence of a matched disturbance 6 in the closed loop (1.17).
In this case, the closed-loop dynamics is

| 0 MM, [V.H, 0
MLM(M* —GKdeT} [VZHZ] * [G} (v+9) (1.18)

where J is the matched constant disturbance and v is a control input that will be used
to reject the unknown disturbance. To obtain the dynamics (1.18), we use the control
U = Ueg + upr +vin (1.13), and we add the disturbance. Notice that the disturbance
shifts the equilibrium of the closed loop, defined by zero velocities (equivalently
p =0), from the desired equilibrium g* to a new equilibrium g, which is the solution
of

~MyM 'V, V+GS =0,

which implies that § = (8, @) with 8 = 8* + WS and @ = 0. This shows that
the control objective is not achieved by the controller in the presence of constant
disturbances, since 6 will not reach the desired value at steady state as desired.
This motivates us to implement outer-loop controllers to reject constant unknown
disturbances.
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1.3.4 Robust Energy Shaping

In this section, we implement three integral based controllers proposed in [3] to
enhance the robustness of energy shaping controller. We develop these integral con-
trollers for the disk-on-disk in closed loop with the control (1.16). That is, for the
closed-loop dynamics (1.17) we design a control law v to reject constant distur-
bances 8. We first present the most complex controller which is a nonlinear PID,
and subsequently we present two simpler versions, which result in a type of PI and
PID controllers. We also extend this control design to ensure the second control
objective 0.2, which is to ensure tracking of constant angular velocities.

1.3.4.1 Integral control

The fundamental idea proposed by [3] is to find a dynamic control law v(g, p, {),
where { is the state of the controller, and a change of coordinates such that the closed
loop in the new coordinates can be written as a Hamiltonian system, thus stability is
ensured. For the DoD closed loop (1.18), we proposed a target Hamiltonian system
in new coordinates z € R>, where we have augmented the state vector by adding the
controller state. The target Hamiltonian system is

4 - M'M; -L7[V,H,

D) =|-MyM' —GK,G" —GK;3| |V_,H: (1.19)

3 ' kKIG" -I3 | |V,H:
with Hamiltonian

1+ 1

Ho(2) = 52 My "2+ Vala1) + 5 Kies = ) (1.20)

where
1 kz C 2
VZ(Z1)=Vd(q)( =gvocos(mH?(zu—gm—kl), (1.21)
q4=z1

. T .
with z; = [z“ Z]z] and constant gains equal to

L2M'GK\G"TM™!

L 2 M 'GK,

G2 KIG"M; ' Gk,
5

% E

K; (K,G"M;'GK> + K3)

where the new coordinates z = y(q, p, ) are obtained by the state transformation
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721 =q—-G(at+p) (1.22)
» = p+GKiGTM™'VV, + GK2K; (¢ — 24) — MGa (1.23)
z=( (1.24)

withK, > 0,K; >0, K; >0, Kz >0and K> = (GTMd*lG)il. The values of & and
B characterizes the ramp profile of the angle reference that should be tracked by
the Disk 1. Notice that when z; converge to zero, then g converge to G(at + f3).
Therefore, we look for a control law that render the closed-loop dynamics in the
form (1.19), and we study the stability properties of such system at the origin. To
obtain such control law, we first notice that if we differentiate (1.22) and replace
the derivative of the states by their corresponding state equations from (1.18) and
(1.19), we obtain

21 =q¢—Ga
=M 'p—Ga
=M [20—GKiG"M™'VV, — GK:K/({ — 25) + MGa] — Gat
= -V, H +M "MV H,—~ V_H, (1.25)

which implies that the dynamics of z; expressed in the new coordinates z is exactly
the first row of (1.19).

Similarly, to construct the dynamics of z; as in the second row of (1.19), we
differentiate (1.23) as follows

i = p+GK\GTM~'V*V.2, + GK>K) 23
= —~M M 'VV; — GK,G' M, ' p+Gv+GS + GK|G" M~ 'V*V,(¢§— Ga) +
GK>K;z3. (1.26)

from where we can see that to obtain the desired dynamics for z», the control law
should satisfy

Gv = 2 +M;M 'VV,;+GK,G ' M; ' p— G5 — GKiG"M~'V*V,(§ - Ga) —
GK>K;z3. (1.27)
Replacing 7, and 73 in (1.27) for the second and third row of (1.19), respectively, and

noticing that G* [MyM~'VV, — My;M~'VV,] = 0, then the control law as a function
of (g, p,§) results, after some calculations, as follows
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—_— [KVGTMJIGKI GTM ™+ KoKy (KT + K7 GTMJIGK1>GTM_1} vV, —
[K] GTM VAV, M + KKK GTMdl} p— (KVGTM; GKy + K3) K¢+
[KVGTMdl +KG ' M'VAV,M ™ + Ko KiK5 GTMd‘} MGa —
(G'G)'G"MyMm! {VVZ - VVd} . (1.28)

Finally, the dynamics of z3, or equivalently {, can be freely set as in the third row
of (1.19), which can be written as follows

¢ = (KJ we GTMd—lGKl) GTM 'YV, + K] GTM; p—
K; G'M;'MGa. (1.29)

The controller, compose by the control law (1.28) and the integrator (1.29), does not
required the information of the constant disturbance 9.

We have shown that the dynamics (1.18) in closed loop with the nonlinear PID
controller (1.28)-(1.29) can be written in the form (1.19). The Hamiltonian form of
the closed-loop dynamics ensures its stability. Indeed, the Hamiltonian in (1.20) has
a minimum at the desired equilibrium (z1,22,23) = (0,0,23) if k; =0, and it qualifies
as a Lyapunov function for the dynamics (1.19). The time derivative of H; is

H, = -V 'Vi(z)) M 'GK\G"M™'VV, — 2] M; ' GK,G "M ' 2o — K} (23 — 75)*
<0

which ensures stability. Asymptotic stability follows using LaSalle argument and
noticing that the maximum invariant set included in . = {(z1,22,23)|G"M~'VV, =
0,G"M; 'z, = 0,23 = 7} is the desired equilibrium (0,0,2%).

Notice that the controller (1.28) is a nonlinear PID, which we will refer as
NLPID2. Moreover, two simpler version of this controller can be obtained by set-
ting the controller parameters to particular values. Indeed, a simpler nonlinear PID
can be considering K> = 0 and K3 = 1, which we will refer to as NLPIDI, and a
nonlinear PI controller is obtained by setting K| = 0 and K3 = 0, which will refer to
as NLPL

In addition, we point out that a controller with only the integral of the passive
outputs, which are the velocities form mechanical systems, can be obtained by set-
ting K; =0, K, =0and K3 = K ! We will refer to this controller as IA. It has been
shown in [14] that this type of integral action does not reject disturbances, destroys
the detectability of the passive outputs and creates a manifold of equilibrium. Thus
asymptotic stability is not achieved, a fact that is seen in the experiments.
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1.4 SIMULATIONS AND EXPERIMENTS

In this section we present simulation and experiment results to assess the perfor-
mance of the controllers presented in Section 1.3 and verify their applicability in
a real setup. The simulations are performed using Matlab and the experiments are
carried out the prototype show in Figure 1.3 available at PRISMA Lab. The model
parameters of the disk-on-disk are m;, = 0.335 Kg, m, = 0.22 Kg, r;, =0.15 m and
ro =0.075 m.

OBJECT
(free disk)

BLOCK TO A
SELECT INITIAL

Fig. 1.3 Prototype of the
disk-on-disk available at
PRISMA Lab.

(actuated disk) 1—& q AT

The prototype consists of two disks placed in between two plastic panels. Disk
1 is actuated by a DC motor (Harmonic Drive RH-8D 3006) equipped with a har-
monic drive whose gearhead ratio is 100 : 1, and a 500 p/r quadrature encoder. A
rubber band of about 1 mm encircles both disks to avoid slipping. The commands to
the motor are provided by an ARM CORTEX M3 microcontroller (32 bit, 75 MHz).
This microcontroller receives current references from an external PC through a USB
cable. The measurements of Disk 1 are provided by a encoder while the measure-
ments of Disk 2 are provided by an external visual system. This consists of a uEye
UI-122-xLE camera providing (376 x 240) pixel images to the PC at 75 Hz, that is
also the controller sample rate. In order to speed up computations, a (15 x 15) pixel
Rol is employed by the image elaboration algorithm running on the same external
PC. The control algorithm, which is written in C++, runs on the external PC with a
Linux-based operating system.

We have tested five different controllers in the prototype: i) the standar IDA-
PBC controller, ii) the IDA-PBC controller augmented with the IA, iii) the IDA-
PBC controller enhanced with the NLPID1, iv) the IDA-PBC controller enhanced
with the NLPID2, and v) the IDA-PBC controller enhanced with the NLPI. The
experiments are executed under the following scenarios: the initial conditions of
the balancing and Disk 1 angles are ¢(0) =7 deg and 6(0) = 0 deg respectively,
whilst the angular velocities at starting time are zero. The set-point reference for the
position of Disk 1 position is set to zero (6* = 0), while Disk 2 has to be stabilized at
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the upright position. A constant matched disturbance of value § = 0.01 Nm is added
to the system to evaluate the disturbance rejection properties of the controller.

1.4.1 Standard IDA-PBC

In the first experiment, we evaluate the performance of the IDA-PBC controller
(1.16) stand alone. The parameters of the controller used in the experiment are Ny =
0.41, N12 = —0.03, Ny = 0.003, k2 = 0.0005 and K, = 0.08.

The results of this experiment are shown in Figures 1.4 to 1.6. As expected, the
controller stabilizes Disk 2 at the upright position as shown in Figure 1.4. However,
it is unable to ensure convergency of the angle of Disk 1 to the desired reference due
to the disturbance (see Figure 1.5). The time history of the control torque is shown
in Figure 1.6, which shows that the controller demands a reasonable torque without
large sparks.

Balancing position ¥ (t) [deg]

Fig. 1.4 Time history of
the balancing angle with the
IDA-PBC controller.

1.4.2 IDA-PBC plus IA

In the second experiment, we test the performance of the IDA-PBC controller
plus the IA, that is the controller (1.16) plus (1.28) with K; =0, K, = 0 and
K;=K; ' The parameters of the controller used in the experiment are Ny; = 0.41,
N1 = —0.03, Ny, = 0.003, k; = 0.0005, K, = 0.08, a =0, B = 0 and K; = 20.
The results of this experiment are shown in Figures 1.7-1.10. Similar to the pre-
vious experiment, the controller balances Disk 2 at the upright position, but does
not make the angle of Disk 1 converge to zero, which approaches a value of —160
degrees instead (see Figures 1.7 and 1.8). The state of the controller is shown in
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-100 -

-120}

Disk 1 angle 0 (1) [deg]

—140}

-160

Fig. 1.5 Time history of Disk 180 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 angle with the IDA-PBC o 1 2 8 4 5 6 7 8 9 10
controller. Time [s]

Control input

Fig. 1.6 Time history of the
control input torque and its
value at steady state with the o 1+ 2 3 4 5 6 7 8 9 10
IDA-PBC controller. Time [s]

Figure 1.9, which reaches a value in the equilibrium manifold that has no relation
with the disturbance. Finally, the control torque is plotted in Figure 1.10. This ex-
periment illustrates that the integral action on the velocities does not produce any
benefit when used to reject disturbances, as predicted by the theory.

1.4.3 IDA-PBC plus NLPI

In this fourth experiment, we evaluate the performance of the IDA-PBC controller
plus the NLPI, that is the controller (1.16) plus (1.28) with K; = 0 and K3 = 0. The
parameters of the controller used in the experiment are Nj; = 0.41, Njp = —0.03,
Ny = 0.003, k, = 0.0006, K, = 1.5, K, = (G'M;'G) ™" and K; = 1.6.

The results of this experiment are shown in Figures 1.11-1.14. The plots in Fig-
ure 1.11 and 1.12 show that the controller stabilizes Disk 2 at the upright position
and drives Disk 1 to the desired reference angle despite the action of the disturbance.
However, a small error (less than one degree) on the angle ¢ can be seen in steady
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Fig. 1.7 Time history of
the balancing angle with the
IDA-PBC plus IA controller.

Fig. 1.8 Time history of Disk
1 angle with the IDA-PBC
plus IA controller.

Fig. 1.9 Time history of the
controller state and its value
at steady state with the IDA-
PBC plus IA controller.

Balancing position ¢ (t) [deg]

Disk 1 angle @ (t) [deg]

Controller state

8
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state. Figure 1.13 shows that the state of the controller converges to the value needed
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0.15

Control input

Fig. 1.10 Time history of the
control input torque and its ‘ ‘
value at steady state with the o 1 2
IDA-PBC plus IA controller.

45 6
Time [s]

to compensate the disturbance, and Figure 1.14 depicts the control torque, which is
bounded between admissible limits.

Balancing position ¥ (t) [deg]

Fig. 1.11 Time history of the
balancing angle with the IDA-
PBC plus NLPI controller.

1.4.4 IDA-PBC plus NLPID1

In the second set of experiments, we evaluate the performance of the IDA-PBC
controller plus the NLPID1, that is the controller (1.16) plus (1.28) with K, = 0 and
K3 = 1. The parameters of the controller are as follows: Ni; = 0.41, Nj» = —0.03,
Ny = 0.003, ky = 0.00048, K; = 0.00905, K, =0.35, ¢ =0, =0 and K; = 2.3.
Figures 1.15 to 1.18 show the results of this experiment. The time history of the
deviation angle of Disk 2 respect to the upright position is depicted in Figure 1.15.
This figure shows that Disk 2 is balanced as desired. Figure 1.16 shows that the angle
of Disk 1 reaches the reference value, and the controller rejects the disturbance.
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Disk 1 angle (1) [deg]

Fig. 1.12 Time history of
Disk 1 angle with the IDA- o 1 2 3 4 5 6 7 8 9 10
PBC plus NLPI controller. Time [s]

0.015

0.01

0005}

Controller state
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Fig. 1.13 Time history of the
controller state and its value oot I L
at steady state with the IDA- o1
PBC plus NLPI controller.

0.15

0.1

0.05

-0.05}

Control input [deg]

Fig. 1.14 Time history of o1l
the control input torque and
its value at steady state with
the IDA-PBC plus NLPI 0 1 2 3
controller.

Also, it can be seen in Figure 1.17 that the controller state produces an estimate
of the disturbance, which is used to compensate it. In addition, the control input is
shown in Figure 1.18.
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Balancing position ¥ (t) [deg]

Fig. 1.15 Time history of the . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
balancing angle with the IDA- o 1 4 Timie [s] 6 9
PBC plus NLPID1 controller.
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Fig. 1.16 Time history of a0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Disk 1 angle with the IDA- o1 4T' 5 .8
PBC plus NLPID1 controller. ime [s]
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Fig. 1.17 Time history of
the controller state and its —0.02p- : ]
value at steady state with 0025 I L
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Time [s]

controller.
1.4.5 IDA-PBC plus NLPID2

In the last experiment, we evaluate the performance of the IDA-PBC controller
plus the NLPID2, that is the controller (1.16) plus (1.28). The parameters of the



1 Passivity-Based Control Design and Experiments for a Rolling-Balancing System 19

0.2r
= 0.1
[0}
h=A
5 o
o
£
S 01
€
3
O -02
Fig. 1.18 Time history of
the control input torque and o8
its value at steady state with o4 ‘ ‘
the IDA-PBC plus NLPID1 o1 2 4_ 5 6 9 10
Time [s]

controller.

controller are as follows: Nj; = 0.41, Njp = —0.03, Ny, = 0.003, k» = 0.00025,
K1 =0.012, K = (G™M;'G) ', K3 =0.06, K, = 0.3, =0, f = 0 and K; = 2.2.

The time history of the most significant variables obtained in this experiment are
shown in Figures 1.24 to 1.27. As can be seen in Figures 1.24 and 1.25, the controller
is able to balance Disk 2 at the upright position while stabilizing the angle of Disk
1 at the desired set-point. The controller state and the control torque are shown in
Figures 1.26 and 1.27, respectively. These plots evidence that the controller ensures
internal stability, output regulation and disturbance rejection showing very good
performance.

1.4.6 Tracking angle ramp references for the Disk 1.

Finally, we present simulations to assess the performance of the IDA-PBC controller
plus the NLPID2 when the reference for the angle of the Disk 1 is a ramp. The ramp
reference is 0*(¢r) = at + B, where the constants « and 8 are chosen to change
the shape of the ramp. The controller parameters are as follows: Nj; = 0.41, Ny, =
—0.03, N2 =0.003, k, =0.25,K; =0.012, K, = (GTMd’lG) - ,K3=02,K,=0.5
and K; = 3. The disturbance is set at 6 = 0.25 Nm. To increase the realism of the
simulations, we have include in the feedback loop a zero-order hold (75Hz), a time
delay and noise in the measurements. We also modify the model parameters up to a
10% of their nominal values to emulate uncertainties.

The simulation results are shown in Figures 1.19-1.23. The ramp references and
the time history of the Disk 1 angle are depicted in Figure 1.19. This figure shows
that the Disk 1 tracks the desired ramp profile, while Figure 1.20 shows that the Disk
2 is kept balanced at the upright position. Figure 1.21 shows that the tracking error
of the Disk 1 angle converges to zero as expected. As can be seen in Figure 1.22
the angular velocity of the Disk 1 reaches constant values when the ramp is active,
and converge to zero when the reference of the Disk 1 angle is constant. The same
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figure shows that the angular velocity related to the balancing angle converges to
zero. Finally, Figure 1.23 shows that the control input is sufficiently smooth and
bounded between reasonable values.

A O ©
o o o

Disk 1 angle @ (t) [deg]

Fig. 1.19 Time history of - -

the Disk 1 angle with ramp 0 5 10 1'I§ime [zﬁ) 25 80 3%
references.
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Fig. 1.20 Time history of the 0 5 10 1'I§ime [i(]) 25 80 3%

balancing angle.

1.4.7 Discussion

As shown in the experiments, the IDA-PBC controller presented in Section 1.3.2
is robust against parameter uncertainties. The action of disturbance, however, dete-
riorate the performance of the control system. Indeed, the experiments in Section
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Fig. 1.21 Time history of the
error on the Disk 1 angel with
ramp references.

Fig. 1.22 Time history of the
angular velocities.

Fig. 1.23 Time history of the
control input torque.
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1.4.1 show that the IDA-PBC controller balances Disk 2, but the steady-state error
of Disk 1 angle is notably large. The classical solution of adding integral action on
the passive output does not improve the performance of the controller respect to the
standard IDA-PBC as shown in Section 1.4.2. This fact was previously reported in
[14], however, no experiment has illustrated this theoretical results before.

The experiments in Sections 1.4.3-1.4.5 show that controllers presented in Sec-
tion 1.3.4 are able to balance Disk 2 and simultaneously stabilize the angle of Disk
1, thanks to the action of the outer NLPID. However, from the time histories of the
states we can see that the rate of convergency of the DoD variables using the con-
troller NLPI is faster that the NLPID1, and produces less oscillations. This better
transient performance is, however, darken by the steady state error, which is not
present in the NLPIDI1. Also, the overshoot of Disk 1 angle is greater when using
NLPI compared with the NLPID1 at expense of a more demanding control torque.
On the other side, the last experiment shows that the controller NLPID2 performs
better than the controller NLPI and NLPIDI. Indeed, the transient performance of
the NLPID?2 is better that the other controllers with less overshoot in both the bal-
ancing angle ¢ related to Disk 2 and the angle 0 of Disk 1. These angles reach their
desired values with less oscillations and with a faster rate of convergency. In addi-
tion, the control torque demanded by the controller NLPID2 looks less demanding
and smoother than that of the controllers NLPI and NLPID1. As one may expect,
all these benefits are at expenses of a more complex controller.

The simulations presented in Section 1.4.6 show that the controller NLPID?2 can
also track an angle ramp reference for the Disk 1 while keeping the Disk 2 at the
balancing position. The integral action of the controller reject the action of constant
matched disturbance while ensuring stability. The simulations shown that the control
system can follow a continuos profile of the ramps and constant references for the
actuated Disk without losing balancing of the non-actuated Disk.

The experiments of the disk-on-disk prototype described in Sections 1.4.3,
1.4.4 and 1.4.5 are summarize in a multimedia video that can be watched on
https://youtu.be/B0k8JtYZJrY.

Balancing position ©(t) [deg]

Fig. 1.24 Time history of the ‘ ‘ ‘ ‘ ‘ ‘
balancing angle with the IDA- 0 1 2 3 4 5 6 7 8
PBC plus NLPID2 controller.
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Fig. 1.25 Time history of
Disk 1 angle with the IDA- 0 1 2 3
PBC plus NLPID2 controller.
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Fig. 1.26 Time history of
the controller state and its —0.01
value at steady state with o01s ‘ ‘ ‘ ‘ ‘ ‘ ‘
the IDA-PBC plus NLPID2 0 1 2 3
controller.

1.5 CONCLUSION

In this chapter we present an IDA-PBC controllers for the disk-on-disk system that
is robust to constant matched disturbances. This controller is able to track ramp
references for the angle of the actuated disk while keeping the balance of the non-
actuated disk. The stabilization of constant angles for the actuated disk can be con-
sidered as a reticular case of the ramp reference. We also show simulations and
experimental results to evaluate the performance of the control system and evaluate
the applicability of nonlinear control techniques based on passivity in a real setup.
The robust IDA-PBC proposed in this work exhibit very good performance in both
simulations and experiments, which validate the use of this technique on a practical
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application. Future research will aim to design controllers for more complex robotic
systems performing more involved tasks.
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