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Abstract: The dynamic model of a UAV with an attached robotic arm is derived in a symbolic
matrix form through the Euler-Lagrangian formalism. A Cartesian impedance control, which
provides a dynamic relationship between external generalized forces acting on the structure
and the system motion, is then designed. The hovering control of a quadrotor, equipped with
a 3-DOF robotic arm and subject to contact forces and external disturbances, is tested in a
simulated case study.
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1. INTRODUCTION

Recently, the research community interest towards the
field of aerial robotics is grown. As underlined by Gr-
zonka et al. (2012), unmanned aerial vehicles (UAVs) are
often employed in several “passive” applications, mainly
in indoor scenarios, such as inspection, remote sensing,
surveillance. Lately, these vehicles are used in “active”
tasks such as grasping and manipulation.

Pounds et al. (2011) underline that the grasp of an object
by a flying UAV arises several problems due to both the
unstable dynamics of the vehicle and the coupling effects
given by the presence of the object. Hence, Ghadiok et al.
(2011) and Mellinger et al. (2011) properly design the
gripper since it is a key feature in aerial grasping process.

The bigger the carried payload, the bigger should be the
capacity of the single employed UAV. Maza et al. (2010)
use multiple collaborative UAVs in order to perform a
transportation task. Michael et al. (2011) address the
static equilibrium problem of a grasped payload at a
desired pose, as well as the consequent stability analysis.

However, the complete switching from “passive” tasks
into “active” tasks requires mechanical structures in order
to perform more complex actions. Mobile ground plat-
forms (Yamamoto and Yun (1994); Korpela et al. (2012)),
underwater vehicles (Antonelli (2006)) and space robots
(Yoshida and Wilcox (2008)) can be taken as examples of
this scenario. Therefore, UAVs equipped with a robotic
arm could be an efficient solution providing an aerial
vehicle with the capability of performing dexterous manip-
ulation tasks, but this is not yet a widely adopted solution.

⋆ The research leading to these results has been supported by the
AIRobots and ARCAS collaborative projects, which both have re-
ceived funding from the European Communitys Seventh Framework
Programme (FP7/2007-2013) under grant agreements ICT-248669
and ICT-287617, respectively. The authors are solely responsible
for its content. It does not represent the opinion of the European
Community and the Community is not responsible for any use that
might be made of the information contained therein.

As well as the presence of a carried object creates cou-
pling effects in the dynamic model of the system, in the
same way a mounted robot arm provides even more issues
since its dynamics depends on the actual configuration
of the whole state of the system. Cheviron et al. (2009)
and Nonami et al. (2010) provide the dynamic models
of different UAVs structures, while Castillo et al. (2005)
and Nonami et al. (2010) describe stabilization and track-
ing controls, respectively. Several other control strategies
based on backstepping (Madani and Benallegue (2007);
Bouabdallah and Siegwart (2007)), PD2 and Coriolis and
gyroscopic terms compensation (Tayebi and McGilvray
(2006)), visual data (Altug et al. (2002)), port Hamiltonian
framework (Mahony et al. (2011)) and so on, can be found
in the literature. Nonami et al. (2010), as well as Mahony
and Hamel (2004), assume that the orientation dynamics
of the UAV are compensated with separated high-gain
control loop, and thus they consider a hierarchical control
for which a time scale separation exists between the trans-
lational dynamics (slow time scale) and the orientation
(fast time scale). On the other hand, Siciliano et al. (2009)
describe the dynamic model and control for classical robot
manipulators.

In this paper, the dynamic model of the UAV plus robot
arm system is introduced in a symbolic matrix form
through the Euler-Lagrangian formalism. The high com-
plexity and coupling between the terms could not allow the
separation between translation and orientation dynamics.
The Cartesian impedance control described by Ott (2008)
is here revisited in order to realize a desired dynamical re-
lationship between the whole system motion and external
generalized forces acting on the structure. This relation-
ship is specified in terms of coordinates which describe
the motion of the desired variables in the Cartesian space.
The hovering control of a quadrotor, equipped with a 3-
DOF robot arm and subject to contact forces and external
disturbances acting on some points of the whole structure,
is presented as a simulation case study.
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Fig. 1. UAV/Arm system illustration with the correspond-
ing reference frames.

2. MODELING

2.1 Kinematic model

With reference to the system depicted in Fig. 1, let Σi be
the world-fixed inertial reference frame and let Σb be the
body-fixed reference frame placed at the vehicle center of
mass. The absolute position of the UAV, i.e. of Σb, with

respect to Σi is denoted by pb = [x y z]
T
, while the UAV

attitude is described by the yaw-pitch-roll Euler Angles

φb = [ψ θ ϕ]
T
. Moreover, let ṗb denote the absolute

linear velocity of the aerial vehicle, while ṗb
b describes the

absolute linear velocity of the UAV with respect to Σb. On
the other hand, let ωb be the absolute rotational velocity of
the aerial vehicle, while ωb

b denotes the absolute rotational
velocity of the UAV with respect to Σb. By denoting with
φ̇b the time derivative of φb, the following equations hold

ṗb = Rbṗ
b
b, (1a)

ωb = T bφ̇b, (1b)

ωb
b = RT

b ωb = RT
b T bφ̇b = Qφ̇b, (1c)

where Rb ∈ SO(3) is the rotation matrix denoting the
orientation of Σb with respect to Σi, T b is the (3 × 3)
transformation matrix between the time derivative of φ

and the correspondent ωb, and Q = RT
b T b maps the time

derivative of φb into the UAV angular velocity expressed
with respect to Σb. Notice that Siciliano et al. (2009)
affirm that the above matrices suffer from the so-called
representation singularities, that is θ 6= ±k π

2 , with k =
1, 3, 5, . . ..

The direct kinematics of the UAV can be expressed in a
compact form by the following matrix

Ab(pb,φb) =

[

Rb pb

0T 1

]

. (2)

In the considered system, a robotic manipulator is at-
tached to the UAV. Notice that the following derivation
about the kinematic and dynamic models of the system
does not depend on the particular choice of where the
manipulator is attached. Depending on the specific con-
figuration, e.g. quadrotor, ducted-fun, and so on, the best
mounting of the manipulator in order to have a self-
stabilizing behavior will be considered (see Fig. 2). The
arm consists of n rigid links connected by means of joints
qi, with i = 1, . . . , n. The end of the kinematic chain, that

Fig. 2. Examples of UAVs endowed with a manipulator:
on the left the ARCAS-project concept; on the right
the AIRobots-project prototype.

is not connected to the UAV basis, is an end-effector, e.g.
a gripper. Hence, the direct kinematics function can be
computed with respect to Σb, and it is expressed by

Ab
e(q) =

[

nb
e(q) sbe(q) ab

e(q) pb
e(q)

0 0 0 1

]

, (3)

where q is the (n × 1) vector of joint variables, (nb
e, b

b
e,

ab
e) are the unit vectors of a frame attached to the end-

effector, and pb
e is the position vector of the origin of such

a frame with respect to Σb. By combining (2) and (3), it
is possible to obtain the absolute pose of the manipulator

Ae(ξ) = AbA
b
e, (4)

where ξ =
[

pT
b φT

b q1 . . . qn
]T

is the generalized joints
vector of nξ = 6 + n components.

If the orientation of the manipulator is expressed in terms
of a minimal representation φe, the direct kinematics
equation can be also written in the following form x =
k(ξ), where k(·) is an (m × 1) vector function, nonlinear
in general, and x is an (m × 1) vector describing the
system configuration through a minimal representation
of the orientation. The linear mapping between the time
derivative of x and ξ̇ is given by

ẋ = Jξ̇, (5)

where the (m × nξ) matrix J is the so-called Jacobian of
the system, derived via differentiation of k(·).

Since in the following subsection the whole system dynam-
ics will be derived, it is useful to introduce a frame for each
link of the manipulator. The origin of each of these frames
is placed at the link’s center of mass, while the axes are
coincident with the inertia central axes. By denoting with
pli

the position of the center of mass of the link i with
respect to Σi, the following relationship holds

pli
= pb +Rbp

b
bli
, (6)

where pb
bli

denotes the vector position of the center of mass
of the link i with respect to Σb. Moreover, Siciliano et al.
(2009) consider the following expressions

ṗb
bli

= J
(li)
P1 q̇1 + . . .+ J

(li)
Pi q̇i = J

(li)
P q̇ (7a)

ωb
li
= J

(li)
O1 q̇1 + . . .+ J

(li)
Oi q̇i = J

(li)
O q̇, (7b)

where ωb
li
is the angular velocity of the i-th manipulator

frame with respect to Σb, and where J
(li)
P and J

(li)
O are

the contributions of the Jacobian columns relative to the
joint velocities up to the current link i.

Deriving (6) with respect to time and taking into account
(7) yield

ṗli
= ṗb − S(Rbp

b
bli
)ωb +RbJ

(li)
P q̇, (8)



where S(·) denotes the skew-symmetric matrix, and in
which the anti-commutative property of the cross product
has been taken into account. A similar expression can be
derived for the angular velocity

ωli = ωb +RbJ
(li)
O q̇. (9)

2.2 Dynamic model

The dynamic model can be derived by considering the
so-called Euler-Lagrange formulation, in which the me-
chanical structure can be characterized by the function
L = K − U , where K and U denote the total kinetic
and potential energies of the system, respectively. The
Lagrange equations are then expressed by

d

dt

∂L

∂ξ̇i
−
∂L

∂ξi
= ui, (10)

where i = 1, . . . , nξ, ξi is the i-th generalized coordinate
of ξ, and ui is the associated i-th generalized force.

The total kinetic energy is given by the sum of the
contributions relative to the motion of the aerial vehicle
and the motion of each link of the manipulator

K = Kb +
n
∑

i=1

Kli , (11)

where Kb is the kinetic energy associated to the UAV,
while Kli is the kinetic energy of the link i.

The UAV kinetic energy contribution is given by

Kb =
1

2
mbṗ

T
p ṗb +

1

2
ωT

b RbHbR
T
b ωb,

wheremb andHb are respectively the mass and the inertia
matrix of the UAV. Notice that Hb is constant since it is
expressed with respect to Σb. By taking into account (1c),
the previous contribution can be rewritten as follows

Kb =
1

2
mbṗ

T
p ṗb +

1

2
φ̇

T

b Q
THbQφ̇b. (12)

On the other hand, the kinetic energy contribution of each
link of the robotic manipulator is given by

Kli =
1

2
mli ṗ

T
li
ṗli

+
1

2
ωT

li
RbR

b
li
H liR

li
b R

T
b ωli , (13)

where Rb
li
is the rotation matrix between the frame asso-

ciated to the center of mass of the i-th link and Σb, while
mli and H li are the mass and the constant inertia matrix
of the same link i, respectively.

By taking into account (1c), (8), (9), (12) and (13), the
total kinetic energy (11) can be expressed as

K =
1

2
ξ̇
T
Bξ̇, (14)

where B is an (nξ × nξ) symmetric and positive definite
inertia matrix, whose block-elements are

B11 =

(

mb +
n
∑

i=1

mli

)

I3

B22 = QTHbQ+

n
∑

i=1

(

mliT
T
b S(Rbp

b
bli
)TS(Rbp

b
bli
)T b

+QTRb
li
H liR

li
b Q
)

B33 =

n
∑

i=1

(

mliJ
(li)

T

P J
(li)
P + J

(li)
T

O Rb
li
H liR

li
b J

(li)
O

)

B12 = BT
21 = −

n
∑

i=1

(

mliS(Rbp
b
bli
)T b

)

B13 = BT
31 =

n
∑

i=1

(

mliRbJ
(li)
P

)

B23 = BT
32 =

n
∑

i=1

(

QTRb
li
H liR

li
b J

(li)
O

−mliT
T
b S(Rbp

b
bli
)TRbJ

(li)
P

)

,

in which Iα denotes the (α× α) identity matrix.

The potential energy stored in the system is given by the
sum of the contribution relative to the vehicle and the
contribution relative to each manipulator link

U = Ub +

n
∑

i=1

Uli , (15)

where Ub is the potential energy associated to the UAV,
while Uli is the potential energy of the link i.

The UAV potential energy is thus given by

Ub = mbge
T
3 pb, (16)

where g = 9.8 m/s2 is the gravity acceleration value and
e3 is a (3 × 1) vector selecting the axes of Σi where the

gravity acts, i.e. e3 = [0 0 1]
T
if gravity acts along the z

axis of Σi.

On the other hand, by taking into account (6), the po-
tential energy contribution of each link of the robotic
manipulator is given by

Uli = mlige
T
3

(

pb +Rbp
b
bli

)

. (17)

Thereby, by taking into account (16) and (17), the poten-
tial energy of the system (15) can be written as

U = mbge
T
3 pb + g

n
∑

i=1

[

mlie
T
3

(

pb +Rbp
b
bli

)]

. (18)

Then, having computed the total kinetic and potential
energies of the system in (14) and (18), by computing the
Lagrange equations (10) and by considering the Christoffel
symbols of the first type (Siciliano et al. (2009)), the
dynamics of the whole UAV and robotic arm system can
be written as

B(ξ)ξ̈ +C(ξ, ξ̇)ξ̇ + g(ξ) = u+ uext, (19)



in which the (nξ × 1) vector u represents the generalized

input forces, g(ξ) = (∂U(ξ)/∂ξ)
T

and C is a suitable
(nξ × nξ) matrix whose generic element is

cij =

nξ
∑

k=1

1

2

(

∂bij
∂ξk

+
∂bik
∂ξj

+
∂bjk
∂ξi

)

ξ̇k,

where bij is the generic element of B(ξ), with i, j =
1, . . . , nξ. The last term uext in (19) shapes the effects
of external generalized forces at the joint level.

In the case that the UAV is the quadrotor of Fig. 1,
by supposing negligible the aerodynamic effects and by
supposing low-speed displacements (Nonami et al. (2010)),
the vector u has the following expression

u = R̄bNf = Ξf , (20)

where f =
[

fT
v τT

]T
, with fv the (4 × 1) input vector

of forces given by the quadrotor motors and τ the (n ×
1) input vector of the manipulator actuation torques.

Moreover, R̄b = diag(Rb,Q
T, In) is an (nξ × nξ) matrix,

and N = diag(Ω, In) is an (nξ × 4 + n) matrix, in which

Ω =















0 0 0 0
0 0 0 0
1 1 1 1
0 d 0 −d
−d 0 d 0
c −c c −c















,

where d is the distance from a motor to the center of the
vehicle and c > 0 is the drag factor. By noticing that the
matrix ΞTΞ is always invertible in the relationship (20),
except for the aforementioned representation singularity,
it is possible to map each control input u into a vector of
generalized forces f .

3. CARTESIAN IMPEDANCE CONTROL

Impedance control is still a rather far adopted solution in
aerial robotics applications, while, on the other hand, it is
often employed in robot manipulation tasks. In this paper,
the goal of impedance control is to realize a particular
desired dynamical relationship between the UAV and
robotic arm motion and the external forces. Usually, as
done by Siciliano and Villani (1999), classical impedance
controllers require the measurements of the external forces,
which typically act on the manipulator end-effector. This
situation is unfeasible in aerial robotics applications since
other disturbances and unmodelled aerodynamic effects
can arise during the performed task. Hence, the method
proposed by Ott (2008) can be revised in such a context.

Consider a vector of Cartesian coordinates x with m = nξ.
With this choice, the Jacobian J has (nξ×nξ) dimensions.
Deriving (5) with respect to time yields

ẍ = Jξ̈ + J̇ ξ̇. (21)

Let xd, ẋd and ẍd be the desired, even time-varying,
desired virtual position, velocity and acceleration, respec-
tively. The word virtual is used since this desired configu-
ration will be reached only along the unconstrained motion
directions due to the presence of the external forces. By
denoting with x̃ = xd − x the actual position error, the
following control law can be defined

Fig. 3. On the left, a schematic representation of the
simulated case study A. On the right, a schematic
representation of the simulated case study B.

u = g + JT
(

Bxẍd +Cxẋd +KD
˙̃x+KP x̃

)

, (22)

where KP and KD are (nξ × nξ) symmetric and pos-
itive definite matrices of desired stiffness and damping,
respectively, while Bx and Cx are the inertia and Coriolis
matrices, with respect to the x variables, defined as follows

Bx = J(ξ)−TB(ξ)J(ξ)−1

Cx = J(ξ)−T
(

C(ξ, ξ̇)−B(ξ)J(ξ)−1J̇(ξ)
)

J(ξ)−1.

By substituting (22) into (19), and by taking into ac-
count (5) and (21), the equations describing the closed-
loop system behaviour, and hence the desired dynamic
relationship, namely are

Bx
¨̃x+ (Cx +KD) ˙̃x+KP x̃ = fext, (23)

where the (nξ×1) vector fext shapes the effects of external
generalized forces at the Cartesian coordinate level. A way
to choose the stiffness and damping matrices KP and KD

is illustrated by Ott (2008).

Even in the case of free-motion, f ext = 0, the stability
analysis of the system (23) is not obvious since the matrix
Bx is configuration dependent and time-varying. By con-
sidering the following time-varying candidate Lyapunov
function

V =
1

2
˙̃xTBx

˙̃x+
1

2
x̃TKP x̃,

and by taking into account (19) and (22), it is possible to

show that V̇ is negative semi-definite. Hence, only stability
can be ensured. However, by considering the Cartesian
configuration space C in which the Jacobian J is always
invertible, it is possible to show the asymptotic stability of
the system (23). Moreover, if C corresponds to the entire
state space Rnξ , then Santibanez and Kelly (1997) show
that (23) is uniformly globally asymptotically stable.

On the other hand, in case of constrained motion, f ext 6=
0, the above described stability can be reached only in the
unconstrained Cartesian directions. Moreover, it is worth
noticing that in case of regulation control problems, i.e.
ẋd = 0, the effort for computing (22) drastically reduces,
and the system (23) becomes a passive mapping between
fext and ẋ.

4. SIMULATION RESULTS

The results of two simulated case studies, namely A and
B, performed through the MATLAB/SIMULINK envi-
ronment are presented in this section. With reference to
Fig. 1, the dynamic model of an ASCTEC PELICAN
quadrotor with mass mb = 2 kg and inertia matrix
Hb = diag(1.24, 1.24, 2.48) m2kg has been derived. A 3-
DOF robotic arm mounted at the bottom of the quadrotor
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Fig. 4. Time histories simulating the case studies A and B.

is considered. The robotic manipulator is composed of
2 links of 15 cm and 5 cm length, respectively, and 3
revolute joints; in particular, the first two axes intersect
in a common point. The corresponding centers of mass are
located at the middle of each link. The mass and the inertia
around the rotational axis for the first link are 0.049 kg
and 0.0011 m2kg, respectively, while for the second link
are 0.05 kg and 1.25e−4 m2kg. These values have been
retrieved by building such a manipulator into a 3D CAD
environment. Finally, a distance of 0.1 m, along the vertical
axis zb of Σb, is present between the center of Σb and the
spherical joint reference frame. Being n = 3, and thus
nξ = 9, the chosen Cartesian variables for the control
are the pose of the aerial vehicle and the position of the

manipulator end-effector, that is x =
[

pT
b φT

b pT
e

]T
, while

the initial values of the system generalized joints are set

to ξ = [0 0 2 0 0 0 −π/2 0 π/2]
T
.

The aim of case study A is to perform an hovering control
action while an external force acts along the xb axis of Σb,
simulating, for instance, windy situations (see Fig. 3). This
force has been modelled trough a sine wave of frequency

π/4 rad/s and 1 N amplitude. In order to model the wind
effect blowing in only one direction, the force assumes zero
values during the negative half-period of the wave. The
entire simulation time has a duration of 20 s, while the
external force acts only for the first 10 seconds.

First, a rigid behavior has been imposed to the chosen
Cartesian variables x. The stiffness matrix in (22) has
been tuned to Kp = 80I9, while in order to choose KD,
the values of the damping ratio for each component have
been tuned to 0.8, so as not to have oscillations. The
results of this simulation are shown in Fig. 4. In particular,
Figs. 4(a)-4(c) show that, as desired, the vehicle and the
manipulator end-effector do not move significantly from
their initial conditions.

Then, a compliant behavior of the system is investigated.
Now the stiffness matrix has been tuned to Kp = 5I9,
while the damping ratio values are 0.5 for each component.
The results of this simulation are shown in Fig. 4. The
compliant behavior is noticed looking at the increased
values of the error norms in each time history of Figs. 4(d)-



4(f). After that the effect of the external force is vanished,
the system recovers the desired conditions.

In the case study B, an external force acts along the
xb axis of Σb with the same aforementioned modality.
In addition, another force with 0.5 N of magnitude acts
along the ae end-effector axis for all the 20 s of simulation
time. This scenario simulates, for instance, the case of
the manipulator end-effector in contact with a wall, while
the aerial manipulator should again deal with windy
situations (see Fig. 3). Thereby, the manipulator end-
effector position is chosen to be rigid, while the aerial
vehicle pose is chosen to be compliant. Hence, the stiffness
matrix in (22) has been tuned to Kp = diag(10I6, 100I3),
while the damping ratio values are 0.5 for the UAV
components and 0.85 for the arm end-effector ones.

The results of this simulated case are shown in Fig. 4.
The imposed high stiffness limits the oscillations of the
position of the manipulator end-effector (see Fig. 4(g)).
Since the contact force at the arm end-effector is always
present, the Cartesian components error can be zeroed
only along the unconstrained directions. On the other
hand, the compliance behavior imposed to the position
and orientation variables of the quadrotor can be observed
in Fig. 4(h) and Fig. 4(i), respectively.

5. CONCLUSION AND FUTURE WORK

In this paper, the dynamic model of a UAV equipped with
a robotic manipulator arm has been explicitly derived.
A Cartesian impedance control has been employed in
order to create a dynamic relationship between external
generalized forces acting on the structure and the whole
system motion. Two simulated case studies have been
developed so as to test the proposed framework.

Future work will deal with exploiting the redundancy of
the system, with respect to a given task, in order to
accomplish some other subtasks.
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