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Abstract— In this work, we demonstrate how autonomous
pizza tossing and catching can be achieved. Under the assump-
tion that the pizza dough is grasped by a number of fingers with
soft contact, we formulate the grasp constraints and use them
to derive the individual and combined Euler-Lagrange dynamic
equations of motion of the robotic manipulator and the dough.
In particular, the dynamics of the dough is a modified version
of the rigid-body dynamics, taking into account the change of
inertia due to its deformation. Armed with these mathematical
models, we tackle the two control problems of tossing and
catching. For the tossing phase, we derive an exponentially
convergent controller that stabilizes a desired velocity of the
dough as it is let go. On the other hand, so as to catch the dough,
we generate an optimal trajectory for the end-effector of the
robotic manipulator. Finally, we derive control laws to make
the optimal trajectory exponentially attractive. We demonstrate
the developed theory with an elaborate simulation of the tossing
and catching phases.

I. INTRODUCTION

The problem of tossing and catching a pizza dough is a
procedure that is frequently dexterously performed by human
pizza makers. There are at least three important reasons why
tossing the dough during the preparation of the pizza is
attractive: (i) the dough is stretched to a desired size, (ii) the
dough naturally assumes a configuration that is thicker at
the ends and thinner in the middle, and (iii) as the spinning
dough freely falls, the outside of the dough dries, making
it crunchy in the outside but light in the middle. The pizza
maker is trained to perform a streamlined hand motion to
toss and catch the dough and we are aiming to achieve a
similar feat with a humanoid robot.

There are several challenges to achieve this kind of
manipulation. The fact that the object that we are trying to
manipulate is deformable, complicates the several previously
well-studied problems, such as catching or grasping [1], mo-
tion estimation [2], [3] and manipulation of rigid objects [4].
Furthermore, such nonprehensile manipulation tasks typically
require high-speed sensing and control action [5], [6]. While
the deformation is beneficial for the grasping phase as it
introduces more surface area where normal force may be
applied, it makes the problem of motion estimation harder
because the dynamic model of the rigid body is no longer
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truly valid. In this work, we estimate the equations of motion
of the dough by those of a rigid body whose mass is constant
but whose inertia varies due to its varying shape. We assume
the ability to receive the shape information via a vision sensor,
which enables us to estimate the motion of the dough while
it is in the air. The specific literature for robotic tossing and
catching of a pizza dough is limited. In [7] the authors have
studied how different forms of tossing might yield different
desired behaviors.

With a perfect knowledge of the motion of the dough,
we can generate optimal trajectories to intercept it. The
generation of optimal trajectories in SE(3) has been studied
in [8], [9]. Since we are only estimating this motion, we
repeat the optimal trajectory generation, as we are fed
with new sensor information. The optimal trajectories are
generated in such a way that the initial position, velocity,
acceleration and final velocity and accelerations are matched,
therefore, it is at least thrice continuously differentiable. An
optimal trajectory whose initial and final accelerations are
desired to be prescribed has to satisfy a sixth-order boundary
value problem (BVP). We generate such a BVP by using
the necessary conditions for a path to minimize a convex
combination of the jerk and acceleration functionals. While
minimizing the jerk functional reduces the vibrations in
the structure of the robotic manipulator, minimizing the
acceleration functional reduces the total amount of energy
expended during the catching motion [10]. We can determine
which aspect to emphasize by choosing the convex coefficients
suitably. As soon as the first optimal trajectory is generated,
the robot is instructed to move along this trajectory and update
its path as new measurements come in.

We derive control laws for both the tossing and catching
phases. The control law for tossing the object makes sure the
object has the desired velocity as it is let go while the control
law for catching moves the end-effector of the manipulator
along the previously generated optimal trajectory. The robotic
manipulator is chosen with a redundant, Spherical-Revolute-
Spherical (S-R-S) topology to mimic the human arm with 7
degrees of freedom (DoF). The extra DoF is exploited so as
to flow to the configuration with a maximum manipulability
index along the nullspace of the manipulator Jacobian.

Finally, we demonstrate the developed theory with an
elaborate tossing and catching simulation. Our intentions
are such that these simulations are as close to reality as
possible so that when we implement these control laws
on our experimental setup, most of the results go through
without much modification. In the multimedia attachment, we
also provide animations of the resulting motion for further



verification of the results. The contributions of this work can
be listed as follows
• Coordinate-invariant derivation of individual and com-

bined equations of motion of an S-R-S manipulator and
a deformable rigid body with a fixed center of mass.

• Coordinate-invariant generation of optimal trajectories
on Riemannian manifolds with endpoints left free.

• Coordinate-invariant derivation of a control law that
aligns the z-axes of two different reference frames.

• A methodical treatment of the problem of tossing and
catching a pizza dough with a humanoid robot.

II. GRASP CONSTRAINTS

For the formulation of the contact constraint, we follow [4].
We assume that the fingers contact the dough softly and that
the contact points are fixed. We place two frames at the point
of contact: ΣCi and ΣFi , the contact and the finger frames,
respectively. The contact frame moves with the object, while
the finger frame moves with the hand. In this discussion, the
tool frame that is placed on the hand is denoted by ΣT , the
inertial frame is given by ΣS and the object (dough) frame
is given by ΣO. All of these frames are visually depicted in
Figure 1.

The soft contact condition yields the equation BT
ci

V b
fici

= 0,
for each finger enumerated by the index i ∈I := {1, . . . ,k},
where Bci =

[
I3×3 03
03×3 e3

]
, and V b

fici
is the velocity of the

contact frame ΣCi with respect to the finger frame ΣFi

expressed in the body coordinates. Here, I3×3 and 03×3 are
the 3×3 identity and zero matrices respectively, 03 is the zero
vector, and e3 is the third standard Euclidean basis vector.
We adopt the convention that when the superscript over a
quantity is omitted, it is expressed in the body coordinate
frame, “b”. After some algebra, we find that

Vfici = −Ad−1
gtci

Vst + Ad−1
goci

Vso.

where Ad : SE(3)→ Aut(se(3)) is the adjoint operator on
SE(3) whose range is the set of isomorphisms of se(3),
gab stands for the homogeneous transformation between the
frames a and b, and Vst ,Vso are the velocity of the tool frame
and the object with respect to the inertial frame, respectively.
Therefore, we have the contact constraint

BT
ci

(
−Ad−1

gtci
V̂st + Ad−1

goci
V̂so

)
= 0.

Equivalently, denoting by Jb
st = J the body manipulator

Jacobian, i.e., Vst = Jθ̇, whenever θ denotes the vector of
joint angles, we have

(1)BT
ci

Vfici = BT
ci

(
−Ad−1

gtci
Jθ̇ + Ad−1

goci
Vso

)
= 0.

Defining the following constraint matrices

Bc ,


Bc1 0 · · · 0
0 Bc2 · · · 0
...

...
. . .

...
0 0 · · · Bck

 , A,BT
c


Adg−1

oc1
−Adg−1

tc1
J

Adg−1
oc2

−Adg−1
tc2

J
...

...
Adg−1

ock
−Adg−1

tck
J

 ,

allows us to rewrite the contact constraints (1) in the Pfaffian
form AV = 0, where V ,

[
V T

so, θ̇
T
]T .

BT
ci

([
V̂tci , Ad−1

gtci
V̂st

]
−
[
V̂oci , Ad−1

goci
V̂so

]
−Ad−1

gtci
V̇st+Ad−1

goci
V̇so

)
=0.

This can be simplified by considering the following
Vtci = −Adg−1

tci
Vst + Adg−1

oci
Vso +Voci

so that[
Vtci , Ad

g−1
tci

Vst

]
=

[
Ad

g−1
oci

Vso, Ad
g−1
tci

Vst

]
+

[
Voci , Ad

g−1
tci

Vst

]
.

Plugging this back to the DCC, we get

BT
ci

([
Ad−1

goci
Vso, Ad−1

gtci
Vst

]
+
[
Voci , Ad−1

gtci
Vst

]
−
[
Voci , Ad−1

goci
Vso

]
− Ad−1

gtci
V̇st + Ad−1

goci
V̇so

)
= 0.

Now, since the contact point is fixed in the object frame
of reference, we have V b

oci
≡ 0 for all i ∈I . Therefore, the

second and the third brackets in the expression above drop,
yielding simplified differential contact constraint

BT
ci

([
Adg−1

oci
Vso, Adg−1

tci
Vst

]
− Ad−1

gtci
V̇st + Ad−1

goci
V̇so

)
= 0.

Invoking the relationship between the joint velocities and the
end-effector velocity, we get

(2)
BT

ci

([
Adg−1

oci
Vso, Adg−1

tci
Vst

]
− Ad−1

gtci
J̇θ̇

− Ad−1
gtci

Jθ̈ + Ad−1
goci

V̇so

)
= 0.

So as to express the DCC (2) in a familiar form, define

(3)χ , BT
c



[
Adg−1

oc1
Vso, Adg−1

tc1
Vst

]
− Ad−1

gtc1
J̇θ̇[

Adg−1
oc2

Vso, Adg−1
tc2

Vst

]
− Ad−1

gtc2
J̇θ̇

...[
Adg−1

ock
Vso, Adg−1

tck
Vst

]
− Ad−1

gtck
J̇θ̇


= ȦV,

so that we have the differential contact constraint expressed
in the form AV̇ +χ = 0.

III. KINEMATICS

In order to map the tool velocities and forces to the joint
velocities and torques, we need to derive the kinematics of
the manipulator and the object. The object kinematics are
the well-known rigid body kinematics. To manipulate the
pizza dough, we use a 7 DoF serial robotic manipulator. We
would like this manipulator to have similar characteristics
as the human arm. To that end, we choose the topology of
the manipulator to be of an S-R-S robot. We are developing
a humanoid robotic torso mounted on an omnidirectional
mobile platform, called RoDyMan, in our laboratory and
the S-R-S manipulator corresponds to one of the arms of
RoDyMan, whose frontal view is shown in Figure 1. We
have chosen to perform the tossing and catching operations
with the right arm. This viewpoint lets us identify the first
joint with the shoulder, the second joint with the elbow, and
the last joint with the wrist.

Again, we follow [4] for the derivation of the kinematics
of the S-R-S manipulator. This procedure involves using
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Fig. 1: RoDyMan Prototype: frames and joint axes.

the exponential coordinates for the end-effector position and
therefore maintains the inherent geometric features of the
manipulator. The joint axes, expressed in the base frame are

given by ξi =

[
−ωi×qi

ωi

]
, for each joint i∈ {1, . . . ,7}, where,

ωi is the axis of rotation of each of the ith joint expressed in
the base frame and qi is any point on this axis of rotation,
written in the base frame.

The position forward kinematics is then given by

(4)gst(θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5eξ̂6θ6eξ̂7θ7gst(0)

where gst(0) is the initial pose of the end-effector with respect
to the base frame and the exponential mapping exp : se(3)→
SE(3) is as defined in [4].

The relationship between the joint velocities and the end-
effector velocities is given by the body manipulator Jacobian,
J. This is found by the following computation

J = Jb
st =

[
ξ

†
1 ξ

†
2 ξ

†
3 ξ

†
4 ξ

†
5 ξ

†
6 ξ

†
7

]
ξ

†
i = Ad−1(

eξ̂iθi ···eξ̂7θ7 gst (0)
)ξi

Given the joint velocities, we can then find the end-effector
velocities by the relation V b

st = Jθ̇. Note that away from the
singularities J has rank 6. Given an end-effector velocity
there are infinitely many joint velocities that supply this end-
effector velocity. We need a redundancy resolution technique
to decide which joint velocity we want to supply in order to
achieve a desired end-effector velocity.

IV. DYNAMICS

We have to model the natural motion of the pizza dough,
which is a deformable object. As a first modeling step, we

represent the deformation with two parameters, r and h, the
radius of the pizza and the height of the geometric center,
respectively. In this vein, we assume the dough has a circular
shape with a radius, r, that changes dues to the various S1-
symmetric forces. The height of the geometric center of the
pizza may change due to fluid dynamical forces on the dough.

A. Variable Inertia Rigid Body Orientation Dynamics
Although the mass of the dough remains a constant, its

moment of inertia changes due to the change in its shape. In
turn, this variation affects the conventional Euler-Lagrange
equations of motion of the rigid body. In this section, we
derive the appropriate equations of motion for the orientation
dynamics of the dough in the body frame.

The Lagrangian of the pizza dough is given by

(5)L(Rso, Ṙso) = −det(Io)

2
tr
[(

I−1
o ω̂o

)2
]
=

1
2

ωo · Ioωo,

where Rso is the orientation, ωo is the angular velocity of the
object in the body frame, and Io is the inertia tensor of the
rigid body. The isomorphism from R3 to so(3) is denoted
by ∧ while its inverse is denoted by ∨ : so(3)→ R3. The
dependence of the Lagrangian (5) on Rso and Ṙso stems from
the orientation kinematics, namely, from the equation ωso =
R>soṘso. We would like to calculate the conventional Euler-
Lagrange equations for the rigid body with a variable moment
of inertia. It is well-known that the rotational dynamics is
symmetric with respect to the action of the group SO(3) on
itself. Therefore, by the theory of reduction of dynamics [11],
the equations of motion drop to the quotient T SO(3)/SO(3)∼=
so(3). We have

∂L
∂Rso

=−det(Io) ∂

∂Rso
tr
[
(I−1

o RT
so ˙Rso)

2
]
=−det(Io)Rso[ω̂o,I−1

o ω̂oI−1
o ]

∂L
∂Ṙso

=− det(Io)
2

∂

∂Ṙso
tr
[
(I−1

o RT
soṘso)

2
]
=det(Io)RsoI−1

o
˙̂ωoI−1

o ,

where [·, ·] is the Lie bracket on so(3). Here, the differentiation
with respect to the matrices Rso and Ṙso is performed using the
familiar matrix differentiation rules, followed by projecting
the result onto the tangent space TRSO(3). The projection
operator P from R3×3 on TRSO(3) is given by

P(Q) =
1
2

R
(

Q>R− R>Q
)
.

Pulling the derivatives above back to the Lie algebra via the
left translation map yields
∂L

∂Rso
= −det(Io)

[
ω̂o, I−1

o ω̂oI−1
o
]
,

∂L
∂Ṙso

= det(Io)I−1
o

˙̂ωoI−1
o

so, the Euler-Poincaré equations motion are found to be
(6)Ioω̇o−Io(ω̂oI−1

o
dIo
dt +

dIo
dt I−1

o ω̂o)
∨
+tr(I−1

o
dIo
dt )Ioωo+ωo×Ioωo =ϒ

where ϒ is the external torque applied on the body.

B. Rigid Body Translational Dynamics
The translational dynamics of the object are the usual

Newton’s equations written in the body frame
(7)mov̇o + ωo × movo + moγRT

soe3 = f ,

where γ≈ 9.81 m
s2 is the gravitational acceleration, Rso ∈ SO(3)

is the rotation matrix of the body with respect to the inertial
frame, mo is the mass of the body, vo and f are its velocity
and the external force expressed in the body frame.



C. S-R-S Manipulator Dynamics

We follow [4] once again to derive the manipulator
dynamics, whose details have been omitted due to space
constraints. This procedure yields

(8)Mr(θ)θ̈ +Cr(θ, θ̇)θ̇ + N(θ) = τ,

where Mr(θ) is the manipulator mass matrix, Cr(θ, θ̇) is the
Coriolis matrix and N(θ) are the gravitational terms and τ

consists of the joint torques.

D. Object and Manipulator Combined Dynamics

When the fingers and the object are in contact, there are
forces arising from this interaction. In the combined system,
the forces on the object may only be imparted via the contact,
therefore we have the object dynamics

(9)MoV̇ b
so + φo

(
gso,V b

so

)
= Fo,

where the mass matrix Mo, the force on the object Fo, and
the Coriolis and gravity terms φo are given by

Mo =

[
moI3 0

0 Io

]
, Fo =

k

∑
i=1

AdT
g−1

oci
Bciλi,

φo(gso,V b
so) =

[
ωo×movo+moγRT

soe3

−Io(ω̂oI−1
o

dIo
dt +

dIo
dt I−1

o ω̂o)
∨
+tr(I−1

o
dIo
dt )Ioωo+ωo×Ioωo

]
.

Similarly, each finger will experience a reaction force
due to Newton’s third law. These reaction forces occuring
at the contact locations are mapped to the tool frame by
the corresponding adjoint transformation. Subsequently, the
wrench at the tool frame are mapped to the joint torques by
the body manipulator Jacobian. Therefore, the reaction force
on the tool frame and on the joints are given by

Ft = −
k

∑
i=1

AdT
g−1

tci
Bciλi, τreac = JT Ft .

Consequently, the manipulator dynamics become

Mrθ̈ +Cr(θ, θ̇)θ̇ + N(θ)︸ ︷︷ ︸
,φr(θ,θ̇)

= τ−
k

∑
i=1

JT AdT
g−1

tci
Bciλi

In order to express these equations together, we are going to
introduce some more definitions, let

M ,

[
Mo 0
0 Mr

]
, Φ ,

[
φo
φr

]
, T ,

[
0
τ

]
, Λ ,

λ1
...

λk

 .
Then we have the following system of differential-algebraic
equations

(10)
MV̇ + Φ(gso,Vso,θ, θ̇) = T + AT

Λ

Λ =
(
AM−1AT )−1 (

AM−1(Φ− T )− χ
)

or, equivalently, we have

(11)
[

M −AT

−A 0

][
V̇
Λ

]
+

[
Φ

0

]
=

[
T
χ

]
.

V. TRAJECTORY GENERATION

In order to render the catching problem as easy as possible,
it may be desirable to toss the dough in the air in such a way
that it neither has any lateral linear velocity nor any angular
velocity along the roll and pitch axes. As desirable as it might
be, unmodeled dynamics due to aerodynamic forces and the
compliance of the dough inevitably imparts such velocities
while the dough is in flight. We assume the presence of an
estimator which predicts the motion of the dough while it is in
the air and updates its prediction at regular intervals. To begin
with, we intend to consider the visual tracking problem of a
dough of a certain rigid shape, concentrating on obtaining the
motion of its center of mass using our preliminary experience
in the estimation of such objects [2], [3]. Afterwards, we
intend to develop visual tracking algorithms to track the
deformation and the orientation of the freely falling object.
Preliminary results on tracking deformation and orientation
can be found in [12]. In this section, we tackle the problem
of generating an optimal trajectory for the end-effector of
the robotic hand, given the prediction of the motion of the
dough.

A. Theory

We are interested in trajectories for which we can specify
the initial position, velocity, acceleration and final velocity
and acceleration of the motion. The final position is going
to be dictated by the final position of the dough. This final
position of the dough is a function of the final time, which is
going to be a parameter to be determined by the optimization
process. Note that, the motion may be specified in either the
joint space, which is a torus, or the task space, which is the
special Euclidean group of three-dimensions over the reals. At
this stage, we are going to evade this distinction by assuming
that the path we would like to generate is on an arbitrary
Riemannian manifold [13]. Let us call this path c : (a,b)−→Q,
and the metric on Q ⟪·, ·⟫. We let f : (−ε,ε)× (a,b) −→ Q
be a variation of c

f (0, t) = c(t), ∀t ∈ (a,b) and f (s,a) = c(a).

We have two vector fields of importance along the path c.
The first one is called the variation field, defined by

Sc(s) :=
∂ f (s, t)

∂s
=

d ft(s)
ds

.

and second one is the velocity vector field of c, given by

Vc(s) :=
dc(t)

dt
=

∂ f (s, t)
∂t

=
d fs(t)

dt
.

In order to perform calculus on the curves of this Riemannian
manifold, we introduce the Levi-Civita connection, ∇. Given a
curve c(t) and a connection, there exists a covariant derivative,
which we denote by D

dt .
The curvature R of a Riemannian manifold Q is a correspon-

dence that associates to every pair X ,Y ∈ X(Q) a mapping
R(X ,Y ) : X(Q)−→ X(Q) given by

R(X ,Y )Z = ∇Y ∇X Z − ∇X ∇Y Z + ∇[X ,Y ]Z, Z ∈ X(M).

There are many paths that satisfy the conditions on initial
and final positions, velocities and accelerations. Since we



would like to specify the initial position, velocity, acceleration
and final velocity and acceleration, we need a sixth-order
differential equation into which we can plug these constraints
as boundary conditions. Such a differential equation is what
we end up with when we minimize the jerk functional,
for example. On the other hand, the jerk functional is not
necessarily a measure of how much effort is expended so
much as it is a measure of vibrations within the system. If
we would like to minimize the end-effector wrenches that
is needed to catch the dough, we would have to minimize
the acceleration functional. This approach, however, yields a
fourth-order differential equation and so does not lend itself
to imposing the desired boundary conditions.

In order to overcome this quandary, we propose to minimize
not just the acceleration nor just the jerk, but a convex
combination of the two. As long as we keep the weight of
the jerk functional away from zero, we shall still end up with
a sixth-order differential equation and will be able to impose
the desired boundary conditions. Furthermore, we can tune
the weight of the acceleration functional so that it is arbitrarily
close to unity, which would practically ignore the effect of
the jerk functional and yield an almost optimal minimum
acceleration path that successfully catches the dough. With
this motivation, we define the cost functional to be minimized
to be

(12)Lc(s) :=
∫ t f +sδt f

t0
α⟪D2V

∂t2
, D2V

∂t2
⟫+β⟪DV

∂t , DV
∂t ⟫dt

where the weights α and β satisfy α + β = 1. Here, we
consider only the case where the final position is left free
and is part of the minimization problem. We calculate the
first variation of this functional using analogous calculations
as in [9] and, in addition, taking special care of the free
endpoint conditions. This yields

1
2

d
ds

Lc(s) =
∫ t f

t0

⟪α

(
−D5V

∂t5
−R
(

V,D3V
∂t3

)
V+R

(
DV
∂t ,D2V

∂t2

)
V
)
+β

(
D3V
∂t3

+R(V,DV
∂t )V

)
, S⟫dt

+
(

1
2 α⟪D2V

∂t2 , D2V
∂t2 ⟫+ ⟪α D4V

∂t4 − β
D2V
∂t2 , dζ

dt ⟫
)∣∣∣∣

t f

δt f .

(13)

Consequently, the necessary conditions for the minimization
are

(14)

α

(
−D5V

∂t5
−R
(

V,D3V
∂t3

)
V+R

(
DV
∂t ,D2V

∂t2

)
V
)
+

β

(
D3V
∂t3

+R(V,DV
∂t )V

)
=0, ∀t0≤t≤t f(

1
2 α⟪D2V

∂t2
,D2V

∂t2
⟫+⟪α

D4V
∂t4
−β

D2V
∂t2

, dζ

dt ⟫
)∣∣∣∣∣∣

t f

=0

c(t0) =γ0, V (t0)=V0,
DV
∂t (t0)=A0,

c(t f ) =ζ(t f ), V (t f )=
DV
∂t (t f )=0.

B. Generating Tool Frame Trajectories

In this section, we discuss how we generate optimal
trajectories for the motion of the end-effector, given the
initial position (x0,y0,z0) and velocity (vd0,x,vd0,y,vd0,z) of
the dough at the moment it is tossed by the end-effector.

With this data, we can integrate the dynamics of the center
of mass of the dough to find the path it takes

pd(t) =
(

x0 + vd0,xt, y0 + vd0,yt, z0 + vd0,zt −
1
2

γt2
)
.

Moreover, we can also numerically integrate the rotational
dynamics of the dough, derived in Section IV-A, to find the
rotational path the dough takes. We then use this information
to find the extremal of the cost functional defined in the
previous Section V-A. In particular, we break this problem
into two. We compute the optimal translational path using the
necessary conditions (14). The final time that is generated
from this procedure is then used to determine the orientation
the tool needs to have by evaluating the orientational trajectory
of the dough at this instant. One could also find the optimal
trajectory directly in SE(3), without breaking the problem
into two. However, in this case, it is necessary that the
rotational motion of the dough be interpolated using one
of the available techniques [9]. Moreover, the free endpoint
condition presented in the necessary conditions (14) has to
be solved iteratively, which injects a fair deal of complexity
into the problem.

The necessary conditions presented in equations (14) yields
the differential equation −αp(6)+βp(4) = 0 in addition to
the following concrete boundary condition equations for the
translational motion of the end-effector

p(t0)− p0
p′(t0)− v0
p′′(t0)− a0

p(t f )− pd(t f )− lhRd(t f )e3
p′(t f )
p′′(t f )

p(5)(t f ) · p′d(t f ) +
1
2 p(3)(t f ) · p(3)(t f )


= 0,

where the first three equations are self-explanatory. They are
boundary conditions to match the initial position, velocity
and acceleration of the tool frame with that of the dough.
Assuming the body z-axis of the dough points orthogonal to
the plane of the dough and lh > 0 is a constant, the fourth
equation states that the end-effector should be placed directly
underneath the dough at the final time. The fifth and sixth
conditions impose the design choice that the final translational
velocity of the tool frame vanish. Upon experimentation, it
was empirically observed that if the hand is stopped at the
time of contact (catching), no slippage occurs. Lastly, the
final equation is the free endpoint condition from which we
solve for the final time at which the catching should occur.

The general solution to the differential equation is given
by

p(t) =

[
x(t)
y(t)
z(t)

]
=

3

∑
n=0

[
antn

bntn

cntn

]
+

(
α

β

)2
 a4 cosh

(√
β
α t
)
+a5 sinh

(√
β
α t
)

b4 cosh
(√

β
α t
)
+b5 sinh

(√
β
α t
)

c4 cosh
(√

β
α t
)
+c5 sinh

(√
β
α t
)

.
We use this analytic expression in the boundary conditions
presented above along with a nonlinear root finder to solve
for the 19 unknowns, namely, the coefficients a0 through c5
and the final time t f .



The next task is to find the optimal rotational path the
end-effector is desired to follow. The necessary conditions in
equations (14) yields the differential equation

−α

(
ω
(5) + 2ω× ω

(4) +
5
4

ω×
(

ω× ω
(3)
)
+

5
2

ω̇

× ω
(3) +

1
4

ω× (ω× (ω× ω̈)) +
3
2

ω× (ω̇× ω̈)

−(ω×ω̈)×ω̇− 1
4
(ω×ω̇)×ω̈− 3

8
ω×((ω×ω̇)×ω̇)

− 1
8
(ω× (ω× ω̇))× ω̇

)
+ β

(
ω
(3) +ω× ω̈

)
= 0,

along with the boundary conditions

I − Rst(t0)T Rso(t0)
ω̂st(t0)− R−1

ot (t0)ω̂so(t0)Rot(t0)
α̂st(t0)− R−1

ot (t0)α̂so(t0)Rot(t0)
I − Rst(t f )

T Rso(t f )
ω̂st(t f )
α̂st(t f )

 = 0.

where α̂ is the angular acceleration. The first three equations
match the initial orientation, angular velocity and angular
acceleration of the tool frame and the dough, taking into
account the constant rotational offset between them due to the
choice of initial conditions of the reference frames. The fourth
equation is a condition that the final orientations of the end
effector and the dough should match, where the yaw rotation
of the dough has been eliminated. The final two equations
dictate that the final angular velocity and acceleration of the
tool vanish.

The solution to this boundary value problem has no
analytical solution and needs to be found using a numerical
boundary-value problem solver. We have used Matlab’s
“bvp4c” function [14] to accomplish this task. Due to space
requirements we are unable to provide illustrations of the
trajectories generated by this optimization procedure. The
reader is referred to [8] for similar calculations and relevant
examples with illustrations.

VI. CONTROL LAW

There are two distinct control objectives that we are
pursuing in this work. The first one is to toss the pizza
dough such that it reaches a certain height, hd , and by the
time it comes back to the level of the fingers it has spun
a certain number of times, nd . The second objective which
begins after the tossing phase has taken place, is to catch the
pizza dough. We assume that we have generated an optimal
trajectory for the end-effector of the S-R-S manipulator to
follow in order to intercept the dough. The second control
objective is to have the end-effector follow this generated
trajectory.

A. Tossing

The simplest plan to achieve the tossing goal may be
excogitated by assuming that the center of mass of the dough
behaves like a point mass during the free-fall phase. With
this assumption, we can analytically determine how long the
flight takes and the maximum height that the center of mass

Time of flight t f
2vo·e3

γ

Max projectile height hd
(vo ·e3)

2

2γ

No. of revolutions nd
ωo,3t f

2π

TABLE I: Projectile motion

reaches. These are the familiar formulas from elementary
mechanics, cf. Table I.

From the maximum height formula, we can derive an
expression for the desired velocity of the dough at the time of
release: vo,d =

[
0, 0,

√
2γhd

]T
. Substituting the formula

for the time of flight into the formula for nd , we find a
formula for the desired angular velocity of the dough at the
time of release.

nd =
ωo,3t f

2π
=

ωo,3vo ·e3
γπ

=
ωo,3

π

√
2hd

γ
=⇒ ωo,d=

[
0, 0, πnd

√
γ

2hd

]
T ,

where ωo,3 is the third component of the angular velocity
of the object. Combining these last two expressions for the
desired linear and angular velocities, we get the desired
velocity for the dough as

Vso,d =
[
0 0

√
2γhd 0 0 πnd

√
γ

2hd

]T
.

In order to achieve this velocity, we need to act at the
acceleration level and control the velocity accordingly. We
go back to equation (9) and compute the contact forces, Λ,
that will impose an exponentially stable velocity dynamics
to the desired velocity. To that end, let us prescribe

(15)
k

∑
i =1

AdT
g−1

oci
Bciλi = −MoKd (Vso −Vso,d) + φo,

where Kd ∈ R6×6 is a symmetric, positive-definite matrix.
If we can find forces to apply to our fingers such that the
contact forces are as given above, then the object dynamics
will satisfy V̇ +Kd(V−Vd) = 0. As a result the object velocity
will converge to the desired velocity exponentially fast with
the rate of convergence given by the eigenvalues of Kd .

To find suitable forces that we can apply to the fingers in
order to generate the desired contact forces (15), we go back
to the defining equation of the contact forces given by the
second equation in (10). Rearranging this equation gives

AM−1T = AM−1
Φ− AM−1AT

Λ− χ.

However, we need to have the first six components of
the vector T to vanish because those are the forces that
are imposed on the object directly and there is no such
physical for at our disposal. Imposing this constraint yields
the following equation

−BT
c

[
AdT

g−1
tc1

AdT
g−1
tc2

··· AdT
g−1
tck

]T
JM−1

r︸ ︷︷ ︸
,G

τ =AM−1Φ−AM−1AT Λ−χ

Therefore, one possible set of joint torques that would yield
the desired contact forces is given by

(16)τ = G† (AM−1
Φ− AM−1AT

Λ− χ
)
.

where G† is the pseudo-inverse of G and Λ is any solution
of the underdetermined equation (15).



B. Catching

The strategy we employ in order to catch the dough is to
move the end-effector directly underneath the dough. This
direction is determined by the body negative z-axis of the
object frame. Moreover, we orient the end-effector such that
the z-axes of the dough and the end-effector are parallel.
The latter behavior is imposed so that all the fingers come
in contact with the dough almost at the same time, which
reduces the likelihood that slippage occurs during the catching
phase.

We refer to the optimal trajectory, generated in Section V by
ζ∗(t) = (R∗(t), p∗(t)) ∈ SE(3) and to the actual end-effector
trajectory by ζ(t) = (R(t), p(t)) ∈ SE(3). In order to follow
the desired optimal trajectory we find a desired velocity field
Vdes ∈X(SE(3)) whose integral curves converge to the desired
optimal trajectory. In the next step, we control the joints
of the manipulator so that the velocity of the end-effector
exponentially converges to this desired velocity. We utilize
the redundancy of the manipulator by adding an auxiliary
control term, which is the orthogonal projection onto the
nullspace of the manipulator Jacobian of the gradient vector
field of the dynamic manipulability index.

The desired vector field Vdes is found as the gradient vector
field of the potential function Ψ : SE(3)→ R, given by

(17)Ψ(R,p) :=kR‖(I−R∗T R)e3‖2R3
+

kp
2 ‖R

T (p−p∗)‖2
R3

,

where kR,kp > 0 are rotational and translational proportional
gains, respectively. The gradient of this potential function is
then computed to be

Vdes(R,p) =(−kRR(RT R∗e3eT
3−e3eT

3 R∗T R), −kpRT (p−p∗))

Note that, the integral curves of Vdes ∈X(SE(3)) are such that
(Re3, p)−−→

t→∞
(R∗e3, p∗), exponentially fast. The final step in

the control design procedure is then to control the velocity V
of the end-effector such that V −−→

t→∞
Vdes, exponentially fast.

If this is accomplished then by the vanishing perturbation
theory [15], we can claim that (Re3, p) −−→

t→∞
(R∗e3, p∗),

exponentially fast.
We solve this problem by differentiating the relation Jθ̇=V

to get J̇θ̇+ Jθ̈ = V̇ . Substituting for θ̈ from equation (8), we
arrive at the relation

V̇ = JM−1
r
(
τ−Cr(θ, θ̇)θ̇− N(θ)

)
+ J̇θ̇,

If we set the right hand side equal to −kd (V −Vdes), then
from the linear control theory, we know that V −−→

t→∞
Vdes. For

that purpose, we first set τ = Cr(θ, θ̇)θ̇+N(θ)+ τ′ and we
then set

τ′ =J̃T (J̃J̃T )
−1
(−kd(V−Vdes)−J̇θ̇)+

(
I−J̃T (J̃J̃T )

−1
J̃
)

η,

where J̃ := JM−1
r and η is an auxiliary control term that is

designed to maximize the dynamic manipulability index, that
is, η := grad

√
det
(
J̃J̃T
)
.
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Fig. 2: Combined system behavior

VII. SIMULATION

In the RoDyMan prototype that we have developed, the
axes of rotation ωi and the points qi on these axes of rotation
are given by

ω1 =
[
0 −sin

(
π

3
)

cos
(

π

3
)]T

, ω2 =
[
−1 0 0

]T
,

ω3 = ω4 = ω6 =
[
0 −1 0

]T
, ω5 = ω7 =

[
0 0 −1

]T
q1 = q2 = q3 =

[
0 −l0y l0z

]T
, q4 =

[
0 −l0y l0z − l1

]T
,

q5 = q6 = q7
[
0 −l0y l0z − l1 − l2

]T
To complete the derivation of position forward kinematics,
we have selected the initial pose of the end-effector with
respect to the base frame to be the following homogeneous
matrix

gst(0) =


1 0 0 0
0 −1 0 −l0y
0 0 −1 l0z − l1 − l2 − l3
0 0 0 1

 .
Using the dynamics of the combined system introduced

in Section IV, we have tested the controllers developed



in Section VI. When integrating the equations of motion,
we use the constraints due to the first finger and the z-
components of the second and third fingers since these
constraints form a maximally independent set of constraints.
For the tossing objective, we have set hd = 0.5[m] and nd = 5.
With these numbers, the desired object velocity at the instant
of release reads Vd = [0,0,3.1321[m/s],0,0,49.199[rad/s]].
However, in order to account for unmodelled dynamics and
disturbances, we intentionally impart nonzero lateral linear
velocity and roll-pitch angular velocities to the dough by set-
ting Vd = [0.1,−0.1,3.1321[m/s],0.75,−0.5,49.199[rad/s]].
We consider the situation where there are 3 fingers in contact
with the dough, i.e., k = 3.

In this simulation the tossing phase lasts about 0.08[s].
Figure 2a shows the yaw velocity and angle of the object
along with its velocity and position along the inertial z-axis.
We observe in the top-left subfigure that the vertical velocity
of the object has reached 3.132[m/s] and in the bottom-
left subfigure its yaw velocity has reached 49.198[rad/s] at
the time of release. In the top-right figure we observe the
parabolic profile of the z-axis position of the object, and in
the bottom-right figure, we see that after the time of release
(around 0.08[s]), the object has rotated 5 times by the time
it is caught.

After the release has taken place, the optimal trajectory
generation is performed and the manipulator is commanded
with the relevant control law. It turns out that the best
time to intercept the pizza is t f = 0.729[s] at which instant
the translation of the center of mass of the dough and the
orientation of the dough read

pd(t f ) =
[
0.31331 −0.26305 1.6793

]
[m]

Rd(t f ) =

 −0.3925 0.84341 −0.36686
−0.91162 −0.30383 0.27684
0.12203 0.4431 0.88813


and the interception pose of the tool is computed to be

p(t f ) =
[
0.48 −0.38 1.46

]
[m]

R(t f ) =

0.77963 −0.50743 −0.36686
0.61235 0.74053 0.27684
0.13116 −0.44048 0.88813

.
As desired, while the z-axes of the end-effector and dough
frames are matched, the x and y-axes are not necessarily
parallel. We observe in the top two plots of Figure 2b that
the end-effector is successfully controlled to its desired pose,
as the positive semidefinite potential function Ψ presented
in equation (17) is bounded below and above by a positive
constant times the addition of these two plots, both of which
are converging to zero. The bottom left plot depicts the total
amount of torque expended, in the usual Euclidean norm,
at each instant in time. Finally the bottom right plot shows
how the dynamic manipulability index evolves throughout
the manipulation. The decrease at the beginning is due to the
rapid tossing of the pizza and as the redundancy is exploited
to favor the manipulability during the catching phase, we see
that it climbs back up slightly above its starting value.

VIII. CONCLUSION

In this work, we have tackled the problem of tossing
and catching a pizza dough with a humanoid robot. We
have developed the models of grasping the dough with
robotic fingers, the kinematics and dynamics of the robotic
manipulator, the deformable pizza dough, and the combined
system. Using these kinematic and dynamic models, we
have come up with a control law that achieves a desired
tossing motion. In order to plan the catching of the dough
as efficiently as possible we have found an optimal path
that minimizes a convex combination of the acceleration
and jerk functionals. Once the trajectory to be taken has
been decided, the control law we developed for the catching
phase makes sure the robotic manipulator follows this desired
path. We have then presented simulation results in the
form of plots of interesting quantities and animation of the
RoDyMan robot that further verify the validity of the proposed
theoretical development. As future work, we intend to perform
experiments on our humanoid robot, validating the theory
and the simulations unequivocally.
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Birkhäuser, 1992.

[14] MATLAB, version 8.5.0 (R2015a). Natick, Massachusetts: The
MathWorks Inc., 2015.

[15] H. Khalil, Nonlinear Systems. Pearson Education, 2000.


