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Abstract: This paper presents a nonlinear least squares approach to deal with dual-hand robotic ball
juggling. The task considers the repetitive batting (throwing and catching in a single collision) of a ball
between two paddles/hands in a nonprehensile way. In detail, assuming to measure the trajectory of
the ball, by solving a sequence of nonlinear minimization problems through a least squares method,
the configuration of the paddles at the next impact is computed online to juggle the ball between the
hands. Afterwards, an optimal trajectory for the paddles is planned in SE(3). The proposed approach is
evaluated on a semi-humanoid robot with 21 degrees of freedom. Numerical tests show the smoothness
of the planned trajectories and the precision of the proposed juggling algorithm.
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1. INTRODUCTION

Developments in nonprehensile dynamic manipulation are
paving the way to endow robots with human-like dexterous
capabilities for tasks execution. An object is manipulated in a
nonprehensile way when it is not directly caged between the
fingertips or the hand’s palm. Moreover, the force closure con-
straint (see Murray and Sastry (1994)) does not hold. The grasp
is then performed by exploiting only unilateral constraints, al-
lowing the object to roll, slide, and break the contact with the
robot manipulating it. Juggling, hopping, walking, pushing are
typical examples of nonprehensile tasks, according to Lynch
and Mason (1999). Since such kind of tasks are usually com-
plex, skillful and dexterous, they are often divided in simpler
subtasks, named primitives, such as rolling, sliding, throwing,
catching, pushing, batting and so on. Assuming that a super-
visory controller identifies the primitives in the nonprehensile
task, a motion planner for each primitive might be conceived, as
explained by Serra (2016). Focusing on batting, this combines
the nonprehensile primitives of catching and throwing in a sin-
gle collision. A representative example for this task is given by
the table tennis game as described by Serra et al. (2016). This
paper, instead, deals with the iteration of the batting primitive to
create a simple juggling task where a ball is repetitively caught
and thrown between two hands/paddles, without let it fall. Since
juggling actions, in general, require high velocity and precision,
the investigation of the related aspects is useful to confer dex-
terity and powerful manipulation skills to the robotic system .
Moreover, the art of juggling provides also an interesting point
of view on similar problems: as a matter of fact, Mason (2001)
defines running as as kind of self-juggling, creating in this way
a parallel between dynamic manipulation and locomotion.

This paper extends what previously presented by Serra et al.
(2016), in which only the single batting action is taken into
account. Now, the proposed algorithm is improved by consider-
ing the iterative motion required to juggle the ball between the
paddles/hands. The aim of this work is thus to exploit the single

batting primitive to plan an optimal path for the dual-hand
ball juggling task, demonstrating how a complex nonprehensile
manipulation can be dealt with a bottom-up approach, from the
single primitive to the complete task. The paper is organized as
follows. Section 2 presents the state of the art about robotic
batting and juggling nonprehensile manipulation. Section 3
describes the hybrid dynamics within the ball juggling task.
Section 4 presents the proposed dual-hand juggling algorithm.
Section 5 shows the application of the proposed algorithm on
the semi-humanoid robot, while numerical results and critical
discussions endorse the performance of the proposed algorithm.
Finally, Section 6 concludes the paper.

2. RELATED WORK

Planning and control of rhythmic tasks, like juggling ones, has
been a very active research area over the last years. Buehler
et al. (1988); Buhler et al. (1990); Buehler et al. (1994) in-
vestigate the stabilization of juggling tasks. In their work, they
control the trajectory of a puck through a bar which is actuated
around a revolute joint. By means of experimental validations,
they propose the mirror algorithm to control the system. Aboaf
et al. (1989); Schaal and Atkeson (1993, 1994a,b) investigate
robotic juggling tasks putting instead emphasis on learning con-
trol aspects. Brogliato and Rio (2000) consider the robot jug-
gling as a complementary-slackness hybrid mechanical system,
where the force input mainly consists of a family of dead-beat
feedback control laws, introduced via a recursive procedure.
Lynch and Black (2001) show how to control a one joint revo-
lute arm to bat a planar disk in a gravity field towards a desired
juggling limit cycle. The controller is based on a real-time non-
linear optimization using a model of the discrete dynamics, with
the recurrent control as the initial guess for the optimization
procedure. Ronsse and Sepulchre (2006); Ronsse et al. (2007)
investigate some feedback control strategies to continuously
bounce a ball in the air. The influence of the impact acceleration
on the robustness of the system due to parameter uncertainties
is discussed. Trajectory tracking control for a one degree of



freedom (dof) juggling system is deeply studied by Sanfelice
et al. (2007), also with multiple balls. They model mechanical
systems with impacts through hybrid dynamics including both
a set of differential equations/inclusions and a set of difference
equations/inclusions on specific subsets of the state space. The
approach is experimentally validated on a system consisting of
a nearly smooth vertical shaft with a piston-actuated bouncing
ball. In addition, Tian et al. (2013) present juggling experi-
ments to validate a hybrid control algorithm capable of tracking
a periodic reference trajectory. On the other hand, Reist and
D’Andrea (2009, 2012) propose a bouncing ball robot without
using any kind of external sensors (the so-called blind juggler).
Taking the impact time measurements as feedback, they prove
that the closed-loop performance is only marginally improved
as compared to open-loop control. Aoyama et al. (2016) inspect
the flower-stick juggling task through an analytical technique.
By means of the the Poincarè maps, they analyze the stability
of the approach exploiting the concept of virtual connecting
manipulation. Tabata and Aiyama (2003) tackle the concepts
of tossing and catching manipulation to pass an object be-
tween a couple of one dof manipulators. The authors provide
a kinematic model for the task and an iterative learning control
approach. Akbarimajd and Ahmadabadi (2007) propose a plan-
ner to reconfigure planar polygonal objects by juggling them
between the palms of two hand-like manipulators.

As explained in the Introduction, since the dual-hand juggling
task addressed within this paper is intended as an iterated ver-
sion of the batting task, some literature about such nonprehen-
sile primitive is now provided. A high-speed trajectory planner
applied to the batting task is described by Senoo et al. (2006).
The authors explicitly include the dynamic model of the robot
inside their framework, while they rely upon a 1kHz high-
speed vision system. Nevertheless, they do not go into details
about the controller computational effort. A simplified hitting
scenario task is implemented by Oubbati et al. (2013), where a
robot arm hits a ball rolling on an inclined plane placed in front
of the robot. The authors propose a model that autonomously
generates and organizes sequences of timed actions. The timing
of the movements is controlled by nonlinear oscillators. Their
activation and deactivation are coordinated by a hierarchical
neural dynamic architecture. Hsiao et al. (2014) propose instead
an optimal trajectory planner based on the simple minimization
of the rebounding velocity of the ball, with the aim of reducing
the speed of the paddle. Liu et al. (2012) propose an approach
for the batting problem in the context of table tennis games.
The method determines the state of the paddle employing the
hybrid dynamic model of the ball during the free flight together
with the state transition at the impact. In order to compute the
control action, an approximated aerodynamic model is consid-
ered. Serra et al. (2016) extend the technique proposed by Liu
et al. (2012) considering a complete aerodynamic model of the
ball, while dealing with the real-time issue, and introducing a
optimal motion planner in SE(3) for the trajectory of the paddle
so as to correctly strike the ball at the impact time.

3. MODELLING OF THE HYBRID DYNAMICS

The dynamics of the ball is said to be hybrid since it consists
of both the differential equations modelling the free flight
aerodynamics, and the algebraic equations representing the
impact reset map. The former are modelled through Newton’s
equations of motion, while the latter are a reset of the state,
updated according to the impact detection. The considered

dual-hand juggler is equipped with two paddles. Since the
mass of the paddle is usually bigger than the mass of the ball,
only the velocity of the ball is affected by the impact, and
not the one of the paddle. In the following, the paddle that
in turn is going to catch the ball is referred to as impacting
paddle, whereas the other one is referred to as free. They are
indicated through the i and f subscripts, respectively. On the
other hand, the superscripts − and + represent the state of
the ball before and after the impact time, respectively. As an
assumption, a point contact occurs between the ball and the
paddle during the collision. Let ΣW be the fixed world frame,
and let Σip and Σ f p be the frames placed at the center of the
impacting and free paddles, respectively. The z-axis is denoted
as the outward normal to the surfaces of the paddles. Let
p,v,ω ∈ R3 be position, linear and angular velocities of the
ball, respectively. Moreover, let pip,vip,ωip,p f p,v f p,ω f p ∈R3

be position, linear and angular velocities of the impacting and
free paddles, respectively, all expressed in ΣW . Finally, let
Rip,R f p ∈ SO(3) be the rotation matrices of Σip and Σ f p w.r.t.
ΣW , respectively. The hybrid dynamics of the ball is then

ṗ = v, (1a)
v̇ =−g− kd(v,ω)||v||v+ kl(v,ω)S(ω)v, (1b)

v+ = vip +RipAvvRT
ip(v

−−vip)+RipAvωRT
ipω
−, (1c)

ω
+ = RipAωvRT

ip(v
−−vip)+RipAωωRT

ipω
−, (1d)

where S(·) ∈ R3×3 is the skey-symmetric matrix operator,
g = [0 0 g]T is the gravity acceleration vector, and ||·|| is the
Euclidean norm. The functions kd(v,ω) and kl(v,ω), and the
matrices of rebound coefficients Avv,Avω,Aωv,Aωω ∈R3×3 are
detailed by Liu et al. (2012). Equations (1a) and (1b) represent
the ball aerodynamics, while equations (1c) and (1d) are the
reset map of the ball’s state. Notice that in (1b), the spin of
the ball is assumed to be constant during the free flight. The
equations of motion for the impacting and free paddles are
respectively given by: ṗip = vip, Ṙip = RipS(ωip), and ṗ f p =

v f p, Ṙ f p =R f pS(ω f p). Notice that the ball is acted only at each
impact time by mean of the velocity of the impacting paddle,
which enters the ball dynamics through the reset map.

4. ALGORITHM FOR DUAL-HAND BALL JUGGLING

In order to accomplish the desired task, the paddles must repet-
itively intercept the ball in turn. It is assumed that the algorithm
receives as input the measure of the state of the ball (i.e.,
through a visual system). This aspect is out of the scope of this
paper. Hence, the goal of the proposed algorithm is to compute
the orientation and the linear velocity of the impacting paddle
so as to re-direct the ball towards the free paddle. In order to
solve this task, the algorithm has to know a-priori a desired
location where the ball has to be re-directed after the collision
with the paddle, and the time interval ∆t between two consec-
utive impacts. Such predetermined locations and ∆t are input
values shaping the trajectory of the ball within the juggling
task. They should be thus tuned according to the available robot
capabilities (i.e., maximum joint velocities) and the reachable
workspace. After each collision, the algorithm swaps in turn
the free and impacting paddles. The algorithm consists of two
main phases, which are the topic of the following subsections.
In the former, the computation of the state for each paddle
is addressed by solving a sequence of nonlinear minimization
problems through a least squares approach. In the latter, the
trajectory optimization for the paddles is described. Fig. 1



Fig. 1. Scheme of the dual-hand ball juggling algorithm.

Fig. 2. Snapshot of one iteration of the dual-hand juggling task.

schematically resumes the proposed solution. In particular, after
that the visual system provides the configuration of the ball
(i.e., the initial state following the previous impact), solving
two nonlinear minimization problems determines the states of
the ball pre- and post- the impact. This allows to solve the reset
map and compute the desired configuration for the impacting
paddle. This is the first phase addressed in the next subsec-
tion. Afterwards, the optimal trajectory planner computes the
minimum acceleration paths for the free and impacting paddles
to respectively reconfigure at the initial pose and intercept the
ball. Finally, a closed loop inverse kinematics provides the joint
motion for the robot to practically accomplish the task. This is
the phase addressed in the subsection 4.2.

4.1 Computation of the state of the impacting paddle

In order to predict the state of the ball before the impact and to
properly control the paddle, a two-stage nonlinear least squares
(NLS) fitting is designed. The three more relevant positions
of the ball in the space are depicted in Fig. 2 for a single
iteration of the repetitive dual-hand juggling task. pinit ∈ R3 is
the initial position of the ball soon after the previous impact,
eventually given by the visual system; p̄des is the desired
location of the previous iteration step; pdes ∈ R3 is the desired
location of the current iteration step where the ball has to be re-
directed after the impact; ∆t is the predetermined time interval
between two impacts. Notice that the location in the space
where the collision between the paddle and the ball happens
could be, in general, different from the predetermined desired
location where the ball has to be re-directed after the impact. It
goes without saying that, to obtain a repetitive dual-hand ball
juggling task, the chosen position pdes and the interval time ∆t
have to shape the pattern trajectory of the ball such that the free
paddle can intercept the ball within the robot workspace.

By knowing ∆t and the velocity v+init ∈ R3 after the previ-
ous collision, given again by the external visual system, it is
possible to retrieve the predicted pre-impact states of the ball
(pimp,v−imp) ∈ R3 through the minimization problem

min
pimp,v−imp

∥∥∥∥[p̃init(pimp,v−imp)−pinit

ṽ+init(pimp,v−imp)−v+init

]∥∥∥∥2

, (2)

where p̃init and ṽ+init are obtained by numerically backward
integrating the nonlinear equations (1a) and (1b) starting from
the current optimization variables. In rough words, the pre-
dicted pre-impact states of the ball are chosen such that, back-
integrating the aerodynamic model of the ball by ∆t, the value
of the obtained initial state is close as much as possible to the
measured one. In order to obtain the velocity v+imp ∈ R3 of the
ball after the considered impact, which is necessary to direct
the ball towards the predefined desired point pdes, the following
minimization problem is solved

min
v+imp

∥∥∥p̃des(v+imp)−pdes

∥∥∥2
. (3)

Notice that p̃des(v+imp) is obtained by numerically forward in-
tegrating the nonlinear equations (1a) and (1b) starting from
pimp and the current value of the optimization variable. In rough
words, the predicted velocity of the ball after the impact is
chosen such that, forward integrating the aerodynamic model of
the ball by ∆t, the value of the obtained final position is close as
much as possible to the desired one. Hence, it is now possible
to determine the configuration of the impacting paddle. As an
assumption, at each iteration, the predicted impact position pimp
for the ball corresponds to the goal position for the impacting
paddle. On the other hand, the orientation, the velocity of the
impacting paddle are retrieved solving the reset map (1c)-(1d).
Assume the YX-Euler angles (θ,φ) as a parametric representa-
tion of the orientation of the paddle, with φ ∈ [−π/2,π/2] and
θ∈ [0,π], and define Bvv =(I3−Avv)

−1 ∈R3×3, with I3 ∈R3×3

the identity matrix. Having solved (2) and (3), the pose and the
velocity of the impacting paddle are computed through

vip = v−imp +RipBvv(RT
ip(v

+
imp−v−imp)−Avωω

−
imp), (4a)

Rip = RY (θ)RX (φ), (4b)

assuming that ωip = 03 and pip = pimp, where 03 ∈ R3 is
the zero vector, and Rk(·) ∈ SO(3) is the elementary rota-
tion matrix with k = {X ,Y}, representing the rotation of an
angle around the k-axis. More details on the reset map so-
lution and the matrices Avv, Avω are given by Serra et al.
(2016) and Liu et al. (2012). In the first iteration only
the impacting paddle is actuated; after that, at each im-
pact, the free paddle is imposed to stop in a rest position
p0 ∈ R3 and orientation R0 ∈ SO(3), respectively, yielding:
p f p = p0, v f p = 0, R f p = R0, ω f p = 0. As soon as the
first impact occurs, the initial configurations of the system for
the next cycle is available. Impacting and free paddles are
swapped in order to restart another iteration of the algorithm.

4.2 Dual-hand motion planner

The considered motion planner for the paddles replicates what
previously presented by Serra et al. (2016). The configurations
of the two paddles at each impact time, derived in the previous
section, are the input of an optimal trajectory planner which
online computes the optimal path for each paddle from the
current state. The optimal trajectories are generated in SE(3),



minimizing the acceleration functional, expressed on arbitrary
manifold, implemented following the work by Zefran et al.
(1998). In this way, the resulting trajectories require smooth
velocities and accelerations at the end-effectors of the robot.
Notice that the planned trajectories in SE(3) are independent
from the chosen representation for the robots end-effectors’
orientation. Changing the representation for the orientation do
not imply a change in the planner, but only a different mapping
from SE(3). Finally, the motion of the robot joints has to be
computed from the planned Cartesian trajectories for the two
paddles through a first order kinematic inversion algorithm.

5. SIMULATIONS

Numerical results validating the presented approach are shown
in this section. Three case studies are described in the follow-
ing. For all of them, the considered robot is a semi-humanoid
with 21 dofs. This is equipped with an omnidirectional mobile
base, a two dofs torso, a pan and tilt neck, two seven dofs arms,
two cameras on the head following the ball, and two paddles
firmly attached at its end-effectors. Within the simulations, the
radii of ball and paddles are considered 2 cm and 15 cm,
respectively, while the considered mass of the ball is 2.7 g.
The values for the matrices Avv,Avω,Aωv,Aωω ∈ R3×3 in (1c)
and (1d) are retrieved from Serra et al. (2016). Simulations are
implemented in the Matlab environment, in connection with the
V-REP virtual platform by Rohmer et al. (2013). The ode45
solver is used by activating the events option, so as to integrate
ball and paddles dynamics. The minimization problems (2)
and (3) are solved through a least squares approach based
on the Levembert-Marquardt’s algorithm (lsqcurvefit solver).
According to Lippiello and Ruggiero (2012), Cigliano et al.
(2015) and Serra et al. (2016), this is well suited for real-time
computations even with complex and nonlinear equations, such
as the ball and paddles dynamics (1). As initial guess for the
minimization problems, the initial values for the optimization
variables pimp, v−imp, and v+imp are analytically calculated by
solving a simplified free flight model proposed by Liu et al.
(2012). The bvp4c solver is finally used for the two bound-
ary value problem in the minimum acceleration planner. More
details about the implementation of the minimum acceleration
planner can be found in Serra et al. (2016). In order to compute
the motion of the robot joints from the planned minimum ac-
celeration trajectories for the two paddles, a closed loop inverse
kinematic algorithm by Siciliano et al. (2010) is employed.

First case study

In this case study, with reference to Fig. 2, the main assumption
is given from the following equality pdes = pinit , holding for
each iteration. This means that the desired location pdes for the
ball after the impact with the paddle has been put equal to the
previous impact location pinit . The only exception is given by
the first iteration since the ball has not performed yet any previ-
ous impact. The very first pdes point should be then assigned. Its
value together with the initial position and velocity of the ball
are detailed in Table 1. The chosen time interval between two
consecutive impacts is set to the fixed value of ∆t = 0.5 s. Only
for the very first impact, this is set to 0.3 s. The rest positions
p0 and orientations R0 for the paddles are indicated in Table 1.
The 3D trajectories planned for the left and right hands of the
semi-humanoid robot and the path of the ball are depicted in
Fig. 3, where it is possible to appreciate that the paths planned
for the paddles oscillate between the respective rest positions

Table 1. Input parameters for the first case study

Initial position of the ball
[
0.25 0 0.4

]
m

Initial velocity of the ball
[
1.65 −0.2 0.05

]
m/s

First desired point (near right paddle)
[
0 0 0

]
m

Rest position right paddle
[
0 0 −0.1

]
m

Rest position left paddle
[
0.7 0 −0.1

]
m

Rest orientation for both paddles I3

0.6
0.4

y [m]

0.2
00.2

0

x [m]

-0.2

0.1

0.2

0.3

0.4

0

-0.1

z 
[m

]

Fig. 3. 3D trajectories of the ball (red line), left (blue line) and
right (black line) paddles, for the first case study.

Fig. 4. Time sequence in the V-REP environment of the motion
planned for the semi-humanoid robot to accomplish the
first two ball juggling iterations. The first two impacts
occur at 0.3 s and 0.8 s. See the accompanying video.

p0 and the impact points obtained by solving the minimization
problems previously introduced. The picture shows that the ball
follows the juggling pattern. In this picture (and in the next
ones related to the 3D paths) the green marker defines the initial
position of the ball. Fig. 6(a) shows that the average Euclidean
norm of the error between the desired points and the actual ones
is about 2 cm. Only for the very first iteration, the figure shows
the actual impact point compared to the predicted one. The
observed error is mainly justified by the numerical optimization
procedure employed in the presented formulation and explained
in the previous sections. Fig. 4 presents the time sequence of the
semi-humanoid motion, resulting from the kinematic inversion,
during the first two juggling iterations.



Table 2. Input parameters of the second case study

Initial position of the ball
[
0.5 −0.2 0.5

]
m

Initial velocity of the ball
[
1 −0.2 0.05

]
m/s

1st desired point
[
0 0 0

]
m

2nd desired point
[
0 −0.01 0.06

]
m

3rd desired point
[
0.7 −0.085 0.1026

]
m

4th desired point
[
0 −0.02 0.12

]
m

5th desired point
[
0.7 −0.095 0.1626

]
m

6th desired point
[
0 −0.03 0.18

]
m

7th desired point
[
0.7 −0.105 0.2226

]
m

0.6
0.4

y [m]
0.2

0
0.2

0

x [m]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z 
[m

]

Fig. 5. 3D trajectories of the ball (red line), left (blue line) and
right (black line) paddles, for the second case study.

Second case study

In this case study, the assumption made in the previous one is
relaxed, and thus pdes 6= pinit . Therefore, seven different desired
points are considered and listed in Table 2. In the same table, the
initial position and velocity of the ball are detailed, which are
different from the previous case study. The chosen time interval
between two consecutive impacts is set to the fixed value of
∆t = 0.5 s. Only for the very first impact, this is set to 0.3 s.
The rest positions p0 and orientations R0 for the paddles are
the same as the first case study (see Table 1). The shape of
the minimum acceleration paths planned for the paddles of the
semi-humanoid and the ball path for this second case study are
depicted in Fig. 5. Again, the average Euclidean norm of the
error between the desired points and the actual ones is about 2
cm, as plotted in Fig. 6(b).

Third case study

In this case study, the assumption pdes = pinit is re-introduced,
while the value of ∆t now changes during each iteration. The
intervals of time between two impacts, from the first to the
seventh impact, are ∆t = [0.6 0.55 0.5 0.45 0.4 0.35 0.3] s.
The initial position and velocity of the ball are equal to the
ones of the first case study, as well as the very first desired
point. In addition, the rest positions p0 and orientations R0 for
the paddles are also equal to the first case study (see Table 1).
The shape of the minimum acceleration paths planned for the
paddles of the semi-humanoid and the ball path for this third
case study are depicted in Fig. 7. It is possible to observe
that, keeping fixed the desired points as highlighted in the
assumption, the time ∆t shapes the juggling patter. In particular,
by reducing the time interval, the maximum height of the ball

j-th impact time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

||e
pj
|| 

[m
]

0

0.01

0.02

0.03

(a) First case study.

j-th impact time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4

||e
pj
|| 

[m
]

0

0.01

0.02

0.03

(b) Second case study.

Fig. 6. Norm of the error between the desired positions and the
actual ones, at each impact time. Blue circles and black
stars respectively represent the left and right impact errors.

0.8
0.6

0.4

y [m]
0.2

0
0.2

0

x [m]

-0.2

0

0.1

0.2

0.4

0.5

-0.1

0.3
z 

[m
]

Fig. 7. 3D trajectories of the ball (red line), left (blue line) and
right (black line) paddles, for the third case study.

reduces as well. Moreover, it is possible to notice from the same
figure that, with a shorter ∆t, the paddle impacts the ball before
this last reaches the desired position pdes, as in general depicted
in Fig. 2. Due to space constraints, the norm error plot is not
depicted for this case study. In the online video 1 , the former
and latter case studies are included. The video demonstrates the
smoothness of the planned motion for the joints of the robot,
and the synchronized motion of the two hands/paddles.

6. CONCLUSION AND FUTURE WORK

The batting primitive has been exploited to engender the ball
juggling task. A sequence of nonlinear minimization problems
is solved through a least squares approach and an optimal plan-
ner in SE(3) is proposed for the two paddles/hands. Simula-
tion case studies have tested the performance of the proposed
algorithm. As future work, the time interval ∆t between two
consecutive impacts will be automatically computed online as
a further result of the optimization problems. The approach will
be also experimentally validated on the physical robotic proto-
type available in the lab. Besides, a number of juggling patterns
could be implemented exploiting again the batting primitive.
The robot is now able to juggle only one ball, but the method
may be further extended to add further balls.
1 https://youtu.be/VtRe1zE_lhM
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