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Abstract— A method to reconfigure in a nonprehensile way
the pose (position and orientation) of a sphere rolling on a plate
is proposed in this letter. The nonholonomic nature of the task
is first solved at a planning level, where a geometric technique
is employed to derive a Cartesian path to steer the sphere
towards the arbitrarily desired pose. Then, an integral passivity-
based control is designed to track the planned trajectory. The
port-Hamiltonian formalism is employed to model the whole
dynamics. Two approaches to move the plate are addressed
in this paper, showing that only one of them allows the full
controllability of the system. A humanoid-like robot is employed
to bolster the proposed method experimentally.

I. INTRODUCTION

Roughly speaking, manipulation tasks deal with the
change of pose of an object between two different configu-
rations. These tasks may be pursued either in a prehensile
or in a nonprehensile way, depending on the type of the
applied constraints: bilateral in the former case, unilateral
in the latter [1], [2]. Within nonprehensile manipulation, the
object can still be manipulated by the hand, but it is not
possible to prevent any infinitesimal motion of the object,
and it is not possible to resist all external wrenches applied
to it. For instance, if a person holds an object in the palm,
the object cannot fall, but it is not possible to resist any force
lifting up the object.

Nonprehensile manipulation is typically considered at a
dynamic level since the dynamics of both the object and the
robot manipulator are essential to finalize the task. Within
dynamic manipulation, a relevant role is played by forces
and accelerations, which are used together with kinematic,
static and quasi-static forces to achieve a general description
of the manipulation task. In general, nonprehensile dynamic
manipulation offers some potential advantages over prehen-
sile manipulation such as reduction of the task execution
time; extension of the workspace of the robot; increased
dexterity of the robotic system; cheap and simple design of

The research leading to these results has been supported by the
RoDyMan project, which has received funding from the European Research
Council FP7 Ideas under Advanced Grant agreement number 320992. The
authors are solely responsible for the content of this manuscript.

1D. Serra, F. Ruggiero, V. Lippiello and B. Siciliano are with CRE-
ATE Consortium and with the Department of Electrical Engineering and
Information Technology, University of Naples Federico II, via Claudio 21,
80125, Naples, Italy.

2J. Ferguson is with School of Electrical Engineering and Computing
and PRC CDSC, The University of Newcastle, Callaghan, NSW 2308,
Australia.

3A. Siniscalco is with ALTEN Italia, via Guelfa 5, Bologna, Italy.
4A. Petit is with INRIA, Mimesis Group, 1, place de l’Hopital,

Strasbourg, France.

grippers; minimal deformation of the manipulated objects,
and so on [2]. On the other hand, the complexity of such
nonprehensile tasks leads to dividing them in simpler ma-
nipulation primitives [2], such as rolling [3], [4], batting [5],
[6], juggling [7], [8], [9].

This paper is focused on a specific nonprehensile ma-
nipulation primitive: the pose reconfiguration of a sphere
rolling on a plate, which is in turn actuated by a robot.
As evident from the state of the art in the next section,
the examined task has already been extensively investigated.
The reason is that the pose reconfiguration of a sphere
rolling on a plate is an application including a nonholonomic
constraint. Such a task is also fascinating from a control
viewpoint: as a matter of fact, there is no smooth feedback
asymptotically stabilizing a single equilibrium solution, since
Brockett’s necessary condition for smooth stabilization is not
satisfied [10]. Therefore, the nonholonomic constraint can be
handled in two different ways: at the planning level, in which
a geometric path is found to reconfigure the whole pose
of the sphere; at a control level, in which time-varying or
non-smooth feedback control laws are designed. The former
approach is contemplated in this paper.

The conceptual flow diagram of the employed algorithm
for the rolling sphere reconfiguration is depicted in Fig. 1.
The first stage is based on a geometric planner and provides
both a Cartesian path and an associated trajectory satisfying
the desired position and orientation goal for the sphere. Due
to the nature of the nonprehensile manipulation, there is
freedom associated with how the ball and plate system is
controlled to follow the trajectory of the geometric planner.
The controllability of the systems using either force or torque
inputs is examined. By supposing that the rolling dynamics
is slower with respect to the sample time of the controlled
robot, a time-scale separation is considered between the
robot and the rolling dynamics. Therefore, only the dynamic
model of the ball rolling on the plate is taken into account
for control purposes. A simplified model is derived using
the port-Hamiltonian (pH) formalism considering fictitious
forces applied directly to the rolling sphere as virtual inputs.
An Integral Passivity-Based Control (IPBC) is designed to
track the trajectory resulting from the previous stage. Control
allocation is intended to map the virtual inputs to the real
ones actuating the plate. Experiments to verify the results
are performed on the humanoid–like robot, shown in Fig. 2.

At the best of the authors’ knowledge, this paper proposes
some novelties from both the control and the experimental
point of views. First of all, the whole dynamic model of both



Fig. 1. Conceptual flow diagram of the algorithm.

Fig. 2. Picture of the employed 21-dof humanoid-like robot.

the plate and the rolling ball position of the sphere has been
taken into account to analyze controllability issues related to
the actuated platform. For instance, it has been shown that
by actuating the plate with only linear forces it is possible to
control the position of the ball on the plate, while the plate
has an uncontrolled drift in the space. However, by actuating
the plate with only two torques, it is possible to sufficiently
control both the plate and the position of the rolling sphere.
Moreover, the pH-based scheme proposed in [11] has been
modified with the addition of a damping term to improve
transient performance: experimental comparison with a stan-
dard PID controller has also been carried out. Finally, the
authors believe that the performed experiments are the first
ones considering a complete nonprehensile reconfiguration
of the pose of a rolling sphere on a plate. As from the
next section, other nonprehensile experiments in the literature
have considered only a re-positioning of the rolling ball.

II. RELATED WORKS

Montana proposes one of the first mathematical derivations
of the kinematics of rolling contact in [12]. Exploiting the
chart representation and differential geometry tools, Montana
describes the motion of a contact point over the surfaces
of two objects in contact. This way of modeling has been
exploited, for instance, in the rolling manipulation of a sphere
between two fingertips [13]. In the same way, it is worth
pointing out that many works in the robotics and control
community focus on the rolling sphere reconfiguration task
but mainly in a prehensile fashion, obtained by enclosing
the sphere between two plates [14], [15], [16], [17], [18].
Usually, one plate is actuated while the other one is fixed. In
these prehensile applications, the motion of the contact point
can be limited to a subset of the sphere surface, coping with
the local nature of the chart representation.

Among the prehensile applications of the ball and plate
problem, the simultaneous position and orientation open-
loop reconfiguration of a sphere rolling between two hor-
izontal planes has been inspected in [14]. By exploiting
the maximum principle, a path is designed to minimize the
energy spent by the moving plate. The optimal solution
curve minimizes the integral of the geodesic curvature. A
more recent work, instead, presents a set-up with only one
plate with magnetic actuation [15]. The presence of magnets
allow the possibility to counteract external wrenches applied
on the ball: this fits the definition of bilateral constraint
and, for this reason, the manipulation system can be con-
sidered as prehensile1. The proposed approach is robust to
sphere radius variations. A robotic mechanism equipped with
three actuators and tactile feedback is designed in [16] to
dexterously manipulate a sphere through prehensile rolling,
while in [17] the results have been extended to unknown
objects. Furthermore, controllability issues of the prehensile
rolling manipulation problem are addressed in [18], where
an approximate planning technique employing a mapping to
transform the system into a triangular form is proposed.

Examples of robotic nonprehensile rolling manipulation
of a sphere rolling on a plate can be found in the literature,
but only coping with re-positioning purposes. The position
control of a basketball on a plate is tackled in [19]. The
linear velocity of the basketball is estimated exploiting a
force-torque sensor mounted on the end-effector of a robot
manipulator. By using Montana’s equations, a method to
control a manipulator to follow a planned position trajectory
for a spheroidal object is addressed in [20]. A stable contact
region is defined on the object’s surface, where the neigh-
borhood equilibrium - a concept proposed in [21] - is always
guaranteed. Experiments are proposed considering a rubber
hemisphere-plate system. An analysis of the kinematics of
rolling, based on a coordinate-free approach, reviewing the
cases of either pure rolling (non-slipping and non-twisting)
or twist-rolling motion, is proposed in [22].

Similarly to this paper, the above-cited articles deal with
the nonholonomic constraint at a planning level. Neverthe-
less, it is worth citing those works solving the prehen-
sile problem at a control level, like the design of time-
varying [23], [24], or non-smooth [25], or switching [26]
feedback control laws.

III. GEOMETRIC TRAJECTORY PLANNER

The nonholonomic nature of the ball and plate application
is here solved at a planning level. Hence, the trajectory
planner proposed in [15] is employed to find the proper path
to reconfigure the sphere to the desired pose.

Let ⌃

w

: O
w

� x̂ŷẑ be the world frame, while let
⌃

p

: O
p

� x̂
p

ŷ
p

ẑ
p

be the frame attached to the plate. The
position of the ball in ⌃

p

is denoted by r

p

b

=

⇥
x y ⇢

⇤
,

with q =

⇥
x y

⇤
T the projection of r

p

b

on the plate, and

1Referring to the example given in the Introduction, it is not possible
for a human to resist any force lifting up an object held in the palm. In
case of magnets, instead, the magnetic field can withstand forces (within a
defined magnitude) trying to lifting up the metal sphere from the plate.



Fig. 3. Scheme of the Cartesian path to link two position and orientation
configurations of the rolling sphere.

⇢ 2 R+ the radius of the ball. The orientation of the sphere
is described by a set of ZXZ Euler angles, � = (✓,�, ). By
this convention, any rotation of the sphere, R 2 SO(3), can
be seen as the combination of three elementary rotations R =

R

ẑp(✓)Rx̂p(�)Rẑp( ), where R

x̂p(·),Rẑp(·) 2 SO(3) are
elementary rotation matrices around the x̂

p

, ẑ
p

axes of ⌃

p

,
respectively. The orientation of the ball can alternatively be
parameterized by R(⇢� � ⇢⇡, ✓)R (⇢⇡, (✓ �  )/2), where
the rolling motion primitive R(l,↵) 2 SO(3) is defined
in [15] as a rotation of l along the line creating an angle ↵ 2
R with the x̂

p

-axis. Thus, the sphere can be reoriented into
any orientation via two consecutive rolling stages. Likewise,
the sphere can be relocated into any position preserving the
initial orientation with two more straight rolling stages of a
distance of 2⇡n⇢, with n 2 Z.

To recap, the first two movements re-orient the ball into
the desired orientation, while the last two movements lead
the ball towards the desired position preserving the reached
orientation. In total, the ball performs 4 segments to achieve
the desired pose q

f

=

⇥
x y ✓ �  

⇤
T . Hence, starting

from q

i

, the sphere has to pass through three intermediate
points on the plate (q1, q2, q3 2 R2 in ⌃

p

), as depicted in
Fig. 3. Assuming, without loss of generality, that the initial
configuration of the sphere is q

i

= 0, the three intermediate
points are analytically derived by iterating three times the
rolling primitive R(l,↵), through the following parameters:
l1 = ⇢⇡ � ⇢�, ↵1 = ✓; l2 = ⇢⇡, ↵2 =

✓� 
2 ; l3 = 2⇡n⇢,

↵3 =

⇡

2 � �, in which � = arctan 2(y � y2, x � x2) �
arccos (d2/(4⇡n⇢)), with d2 =

p
(x� x2)

2
+ (y � y2)2.

The assumption n � d2
4⇡n⇢ is employed to correctly define

the arccos(·) function. Finally, a trajectory has to be designed
upon the resulting Cartesian path.

IV. PH MODELING OF THE ROLLING SYSTEM

In this section, the dynamics of the system is derived using
the pH formalism (see Appendix I). The main frames and
vectors employed to model the system are depicted in Fig. 4.

In order to include the pure rolling assumption into the
model, two constraints are imposed. First, the sphere is not
assumed to slip on the plate, meaning that the velocity of the
sphere along the x̂

p

and ŷ
p

axes is coupled to the rotational
velocity of the sphere around the ŷ

p

and x̂
p

axes, respec-
tively. Moreover, the sphere is assumed not to spin around
the ẑ

p

axis of ⌃
p

. Denoting with !

p

b

=

⇥
!
x

!
y

!
z

⇤
T the

Fig. 4. Schematic view of the position of the sphere both in ⌃w (rb vector
in white) and in ⌃p (rp

b vector in yellow), and of the position of the plate
in ⌃w (rp vector in red).

angular velocity of the sphere in ⌃

p

, these constraints are
imposed as follows

!
x

= �⇢ẏ, !
y

= ⇢ẋ, !
z

= 0. (1)

The dynamic model has to take into account also the plate
dynamics. In general, the plate has 6 degrees of freedom
(dofs), and thus it might be actuated in multiple ways.
Nevertheless, not all of them are doable from a control
viewpoint. In the following, it is proved that the dynamics
of the nonprehensile ball and plate system, with the plate
actuated by two horizontal linear forces, is not controllable
for the case in which the plate is actuated by two torques
around the same horizontal axes. Other combinations might
be in principle investigated.

A. Force-Controlled Plate

In this first formulation, the plate is actuated by two
horizontal linear forces. The frame ⌃

p

can then only translate
with respect to ⌃

w

, while the relative orientation is kept fixed
R

p

= I3, with I

n

2 Rn⇥n the identity matrix. Without loss
of generality, the position of the plate in ⌃

w

is denoted with
r

p

=

⇥
x
p

y
p

0

⇤
T , while the configuration vector is given

by q

t

=

⇥
x y x

p

y
p

⇤
T . Looking at Fig. 4, the position

of the sphere in ⌃

w

can be computed as

r

b

= r

p

+R

p

r

p

b

= r

p

+ r

p

b

, (2)

while the angular velocity of the sphere in ⌃

w

is !

b

= !

p

b

.
The kinetic co-energy of the system is equal to

T ⇤
t

=

1

2

(m ˙

r

T

b

˙

r

b

+ j!T

b

!

b

+m
p

˙

r

T

p

˙

r

p

), (3)

where m,m
p

2 R are the mass of the sphere and the mass
of the plate, respectively, while j = 2m⇢2/5 is the inertia
of the sphere. The corresponding mass matrix is obtained



including the pure rolling assumption (1), and folding (2)
into the kinetic co-energy (3), yielding

M

t

=

2

664

b0
⇢

0 m 0

0

b0
⇢

0 m
m 0 m+m

p

0

0 m 0 m+m
p

3

775 , (4)

with b0 =

m⇢

2+j

⇢

. The input mapping matrix, G

t

=

⇥
g

t1 g

t2

⇤
, with g

t1 =

⇥
0 0 1 0

⇤
T , g

t2 =⇥
0 0 0 1

⇤
T , comes out from the assumption that the

plate is actuated through force inputs along the x̂ and ŷ axes
of ⌃

w

. Notice that, since the potential energy is zero in this
formulation, by defining the momenta vector as p

t

= M

t

˙

q

t

,
this pH system can be modeled as reported in Appendix I.
However, as demonstrated in Appendix II, the ball and plate
dynamics with horizontal force inputs is not controllable.
This is a crucial aspect of dealing with in real experiments
especially when performed by robots with limited workspace.

B. Torque-Controlled Plate
In this formulation, the plate can rotate around the x̂ and

ŷ axes of ⌃

w

, therefore its orientation is included in the
system configuration. The position of the plate is now fixed,
r

p

= 03, with 0
n

2 Rn the zero vector. The orientation of
the plate in ⌃

w

is described by the rotation matrix R

p

(�

p

),
where �

p

= (✓
p

,�
p

, 
p

) is the set of ZYX Euler angles. The
relation between the time derivative of �

p

and its angular
velocity in ⌃

w

is given by

!

p

= R

p

T

p

(�

p

)

˙

�

p

, (5)

where T

p

(�

p

) 2 R3⇥3 is defined as in [27]. For this
formulation, the configuration vector is given by q

r

=⇥
x y ✓

p

�
p

⇤
T . The  

p

angle around the plate normal
direction is fixed. This last constraint on the plate’s spin is
modeled through the Gimbal equation [27]

˙�
p

sin ✓
p

� ˙ 
p

cos ✓
p

cos�
p

= 0. (6)

Now, the position of the sphere in ⌃

w

is given by r

b

=

R

p

r

p

b

, while its linear velocity is given by

˙

r

b

= �S(r
b

)!

p

+R

p

˙

r

p

b

, (7)

and its angular velocity is given by

!

b

= !

p

+R

p

!

p

b

. (8)

The kinetic co-energy of the system is modified as

T ⇤
r

=

1

2

(m ˙

r

T

b

˙

r

b

+ j!T

b

!

b

+ !

T

p

R

p

J

p

R

T

p

!

p

), (9)

where J

p

= diag(jx
p

, jy
p

, jz
p

) is the inertia matrix of the
plate. In this case, the potential energy of the system is
equal to V

r

(q

r

) = mg(eT3 rb � ⇢), where e

i

2 R3 has
1 at the i-th component and 0 otherwise, and g 2 R is
the gravity acceleration. Finally, the input mapping matrix
G

r

(q

r

) =

⇥
g

r1 g

r2

⇤
, with g

r1 =

⇥
0 0 1 0

⇤
T , g

r2 =⇥
0 0 0 cos ✓

p

⇤
T , comes out from the assumption that

the plate is actuated with torque inputs around the x̂ and ŷ

axes of ⌃

w

. Including the pure rolling assumption (1) and
the Gimbal equation (6), folding (5), (7), (8) into the kinetic
co-energy (9) yields the following mass matrix
M

r

(q

r

)

=

2

66664

b0
⇢

0 0

b0
c✓p

0

b0
⇢

�b0 b0m2

0 �b0 m3 �mxy

c✓p
�m3m2

b0
c✓p

b0m2 �mxy

c✓p
�m3m2

m0

2c2✓p

3

77775
,

(10)

where m0 = 2jx
p

s2
✓p
t2
�p

+ 2jy
p

+ jm1 +

m
⇣
m1⇢2 + 2

�
x+ s

✓pt�py
�2⌘, m1 = 2

s

2
✓p

c

2
�p

+ c2✓p + 1,

m2 = t
✓pt�p , m3 = jx

p

+ b0⇢ + my2, t(·) = tan (·),
c(·) = cos (·), and s(·) = sin (·). Let p

r

= M

r

(q

r

)

˙

q

r

be
the definition of the momenta vector, the corresponding pH
dynamics is

˙

q

r

= r
prH(q

r

,p
r

), (11)
˙

p

r

= �r
qrH(q

r

,p
r

) +G

r

(q

r

)u

r

,

with output vector y
r

= G

r

(q

r

)

Tr
qrH(q

r

,p
r

), and Hamil-
tonian function H

r

(q

r

,p
r

) =

1
2p

T

r

M

�1
r

(q

r

)p

r

+ V
r

(q

r

).
The controllability analysis is presented in Appendix II, and
it guarantees that both the plate orientation and the sphere
position are small-time locally controllable (STLC). This
motivates the choice to have the control authority at the
torque level for the plate.

V. CARTESIAN TRAJECTORY TRACKING

In the previous stage, a complete trajectory is available
to link the initial and the final position and orientation
configurations of the sphere. A Cartesian trajectory tracking
technique based on the passivity control theory is now
proposed for the ball and plate system to track the path
q

d

(t), ˙q
d

(t), ¨q
d

(t) 2 R2 resulting from the geometric tra-
jectory planner presented in Section III.

For control design purposes, it is supposed that the rolling
dynamics is slower than the typical frequencies used for
the motion control of robot manipulators. Since the torque-
controlled plate is firmly attached to the robot manipulator,
it is suitable to consider a time-scale separation between
the torque control of the plate and the restricted dynamics
of the ball on the plate. Therefore, the robot manipulator
is equipped with a high-gain motion controller and, ne-
glecting the effects on the tracking errors deriving from
the manipulator dynamics, it can be considered as an ideal
positioning device [27]. Hence, only the following dynamic
model, restricted to the ball rolling on the plate, is considered
˙

q = r
p

H(p), ˙

p = u, with p = M

˙

q, Hamiltonian function
H(p) =

1
2p

T

M

�1
p and mass matrix M = (m+

j

⇢

)I2. The
(virtual) inputs u are now some fictitious linear forces acting
directly on the sphere. A mapping has then to be found to
link u to the real rotations of the plate.

The IPBC controller for the Cartesian tracking of the
sphere on the plate is derived in the next subsection, while
the allocation mapping is found in Section V-B.



A. Integral Passivity-Based Control
Exploiting the tracking control approach in [28] for pH

systems, the following control law is proposed

u = M

¨

q

d

(t)� k
p

˜

q � k
d

M

�1
˜

p+ u

i

, (12)

where ˜

q = q�q

d

(t), ˜p = p�p

d

(t) with p

d

(t) = M

˙

q

d

(t),
k
p

, k
d

> 0 are tuning parameters, and u

i

is an additional
control input to be used for integral action. The resulting
closed-loop pH dynamics is given by

˙

q̃ = r
p̃

˜H(

˜

q, ˜p), (13)
˙

p̃ = �r
q̃

˜H(

˜

q, ˜p)� k
d

r
p̃

˜H(

˜

q, ˜p) + u

i

,

with output vector y = r
p̃

˜H, and Hamiltonian function
˜H(

˜

q, ˜p) =

1
2 ˜p

T

M

�1
˜

p +

kp

2 ˜

q

T

˜

q. This system is asymp-
totically stable to the equilibrium ˜

q = 0, ˜

p = 0. Using
the control law (12), the system configuration asymptotically
converges to the pre-planned Cartesian path, q = q

d

(t),
p = p

d

(t). The term u

i

in (12) is used to add integral action
exploiting the scheme proposed in [11]. Here a damping term
k
di

has been added to improve the transient performance. The
integral control action has the following form

u

i

= �k
d

k
i

(

˜

p� ⇣)� k
di

M

�1
˜

p, (14)
˙

⇣ = �k
p

˜

q � k
di

M

�1
˜

p,

where ⇣ 2 R2 is an additional integral state and k
i

, k
di

>
0 are integral gains. Including the integral control (14)
and neglecting the dependencies, the closed-loop dynamics
become

˙

q̃ = r
p̃

˜H
cl

+r
⇣

˜H
cl

, (15)
˙

p̃ = �r
q̃

˜H
cl

� (k
d

+ k
id

)r
p̃

˜H
cl

� k
id

r
⇣

˜H
cl

,

˙

⇣ = �r
q̃

˜H
cl

� k
id

r
p̃

˜H
cl

� k
id

r
⇣

˜H
cl

,

with the closed-loop energy function ˜H
cl

=

1
2 ˜p

T

M

�1
˜

p +

kp

2 ˜

q

T

˜

q +

ki
2 (˜p� ⇣)

T

(

˜

p� ⇣).
Stability is established by taking ˜H

cl

as a Lyapunov
candidate for the closed loop system. Along the trajectories
of the system, the time derivative of ˜H

cl

satisfies ˙

˜H
cl

=

�k
d

(r>
p̃

˜H
cl

)

>
(r>

p̃

˜H
cl

)�k
id

(r>
p̃

˜H
cl

�r>
⇣

˜H
cl

)

>
(r>

p̃

˜H
cl

�
r>
⇣

˜H
cl

). Asymptotic stability follows by invoking LaSalle’s
invariance principle.

Such IPBC technique offers some benefits compared with
a PID-based controller, as explained in Subsection VI-A.

B. Control Allocation
In order to map the fictitious forces acting on the sphere

into the plate motion, a control allocation is employed. The
force due to gravity, expressed in ⌃

w

, can be described by
the vector f

g

=

⇥
0 0 �mg

⇤
T . Then, the forces acting

on the sphere, u, are mapped into the forces due to gravity,
expressed in ⌃

p

, through u =

⇥
u
x

u
y

u
z

⇤
T

= R

T

p

f

g

.
Inverting this last equation provides the plate orientation
corresponding to the desired forces acting on the sphere:
�
p

= arcsin (u
x

/mg) and ✓
p

= arcsin (�u
y

/mg cos�
p

).
The u

x

and u
y

terms are given by the IPBC law (12), while
u
z

is arbitrary, as it will be canceled out by the reaction
forces of the plate.

VI. EXPERIMENTS

Instead of building a proper simpler set-up on purpose,
the experiments are performed on the available 21-dof
humanoid-like robot displayed in Fig. 2 [29]. This robot is
equipped with a 2-dof torso, two 7-dof arms, a 2-dof neck,
a head, and a mobile base, and it is properly designed to
test control approaches for nonprehensile manipulation tasks.
For this application, the right arm is equipped with a plate
firmly attached at its end-effector. The size of the square
plate is 0.4 m⇥0.4 m⇥0.005 m. The dynamic parameters of
the physical rolling sphere-plate system are: m = 0.216 kg,
⇢ = 0.035 m and m

p

= 1.3 kg. The processing unit of
the robot is composed of two computers with a Linux-based
operating system, that communicate through a socket. One of
the units is provided with a distribution of the QnX system
and is dedicated to the low-level control running at 5 ms. In
the other unit, the 14.04 version of the Xubuntu system is
installed to run the high-level control.

The head is equipped with a 50 Hz stereo-vision system,
which tracks the rolling sphere position on the plate and
provides the feedback for the control law presented in
Section V. In detail, the vision system consists in estimating
the 3D location of the center of the ball in one of the stereo
camera frames, by triangulating the detected and tracked
2D positions of the ball in both grayscale images. The 2D
detection and tracking procedure of the ball relies on Hough-
based circle detections on both images. The detected circles
are then used to initialize, or reinitialize, a frame-by-frame
circle-tracking technique which consists in locally fitting
the circles on edges extracted in the images. This method
employs the moving edge algorithm [30] to match projected
boundaries of the tracked 3D ball with extracted edges
from both images. To cope with outliers, an iteratively re-
weighted least squares optimization with respect to 2D circle
parameters (center and radius), with Tukey M-estimators, is
used. The implementation is based on both OpenCV2 and
ViSP [31] libraries.

A Kalman filter is exploited to reduce the sensitivity
to noise in the velocity computation, obtained from the
position measurements. Finally, a trapezoidal acceleration
trajectory [27], with a piece-wise constant jerk, is imple-
mented along the path coming from the planner. By choice,
the ball stops at each intermediate point. Nevertheless, if
three consecutive intermediate points belong to the same
straight line, the ball stops only at the first and the last one.

A. Comparative Regulation Test
This experiment is performed to compare the proposed

IPBC approach with a classical PID method. The latter is
designed instead from a traditional Lagrangian model of
a ball rolling on a plate. Such Lagrangian model can be
retrieved by applying the Legendre transformation to the pH
model. The controlling purpose is to bring the sphere at the
plate’s center q

d

=

⇥
0 0

⇤
T m starting from a different

initial position. Naturally, the geometric trajectory planning

2
https://opencv.org/

https://opencv.org/
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Fig. 5. Sphere position in ⌃p resulting from the PID control (dashed red
line) and the IPBC (solid blue line).

phase is not included in this test, since the sphere is not
reoriented. Initially, the sphere is manually placed on the
plate, and its initial position q(0) in ⌃

p

corresponds to the
first position measurement. Such q(0) is chosen as much
close as possible in both the tests employing the PID and
IPBC controllers.

Regarding the test with the PID controller, the initial
position is q(0) =

⇥�0.09762 �0.05354
⇤
T m. The chosen

values for the proportional, derivative and integral gains are
k0
p

= 5.4, k0
d

= 1.8 and k0
i

= 1.7, respectively. Whereas, for
the evaluation of the IPBC technique, the initial condition is
q(0) =

⇥�0.09906 �0.06283
⇤
T m, while the IPBC gains

are tuned as k
p

= 1.1, k
d

= 0.6, k
i

= 1.2, and k
di

= 0.2.
The gains have been experimentally tuned to the best of the
authors’ ability to achieve similar settling times in both tests.

The obtained comparison between the proposed IPBC
technique and the classical PID controller is depicted in
Fig. VI-A. A smaller overshoot is visible in the IPBC
controller for the PID technique. The steady-state position
error with the IPBC approach is about half than the one
obtained with the PID controller. Additionally, notice that
a PID control law, applied to the ball and plate system,
provides asymptotic stability only for a limited set of the
positive k0

p

, k0
d

and k0
i

gains, namely k0
p

k0
d

> k0
i

, according
to Hurwitz’s criterion. Instead, the proposed IPBC tech-
nique is theoretically stable for all possible positive gains
k
p

, k
d

, k
i

, k
di

> 0.

B. Pose Reconfiguration Test

The geometric trajectory planning phase is now duly
addressed within the two different reconfiguration tests de-
scribed in the following.

1) Test 1: In this test, the initial position of the sphere
is q(0) =

⇥
0.08015 �0.04703

⇤
T m and, without loss of

generality, the initial orientation is assumed equal to the
identity. The initial and final velocities of the sphere are
assumed to be zero, while the desired position is q

d

=

x [m]
-0.15 -0.1 -0.05 0 0.05 0.1

y
[m

]

-0.05

0

0.05

0.1

x [m]
-0.15 -0.1 -0.05 0 0.05 0.1

y
[m

]

-0.1

-0.05

0

0.05

0.1

0.15

Fig. 6. Position and orientation reconfiguration - test 1 (left) and test
2 (right). Pre-planned sphere Cartesian path, qd (red line), and actual
Cartesian path, q (blue line). The starting point is marked by a cross, while
the final goal is denoted as a circle.

⇥
0.08 �0.08

⇤
T m and the desired orientation is given by

the rotation matrix R

d

=

⇥
e1 e3 �e2

⇤
. Following the

proposed approach, the geometric trajectory planner provides
the three intermediate points of the pre-planned path: q1 =⇥
0.0801 0.0079

⇤
T m, q2 =

⇥
0.0801 0.1179

⇤
T m, and

q3 =

⇥�0.1163 0.0191
⇤
T m. As mentioned before, since

q

i

, with i = 0, 1, 2, belong to a straight line, the ball
does not stop at q1. The left picture of Fig. 6 depicts the
planned Cartesian path and the actual position trajectory
of the sphere, in ⌃

p

, resulting from the application of the
IPBC. As confirmed by the norm of the linear position
and momenta errors, shown in Fig. 8(a), the IPBC provides
good tracking performance: the position tracking error norm
is under 2.5 cm. This error is mainly due to unmodeled
dynamics, such as static friction at the beginning, small
deformation of the surfaces in contact, or error due to the
measurement system. The IPBC gains are tuned for this
tracking test as k

p

= 1.9, k
d

= 0.6, k
i

= 0.6, and k
di

= 0.1.
Fig. 8(a) also shows the evolution of the �

p

and ✓
p

plate
angles resulting from the control allocation phase. Finally,
the orientation error is evaluated at the final time, when
the sphere must be effectively reoriented. In this test, the
orientation error3 is d

r

= 0.34 rad, which is a fair result, as
it can be appreciated in the video attachment4 and Fig. 7.

2) Test 2: A second reconfiguration test is performed
to accomplish the task with a different desired pose for
the sphere. In this case, the initial pose of the sphere
is q(0) =

⇥�0.07989 0.002352
⇤
T m, and R(0) =

I3. Whereas, the desired position and orientation of
the sphere are q

d

=

⇥
0.08 0.12

⇤
T m, and R

d

=⇥�e1 �e3 �e2

⇤
, respectively. As shown in the right

picture of Fig. 6, the three intermediate points, ob-
tained from the geometric path planner, are: q1 =⇥�0.0799 �0.0526

⇤
T m, q2 =

⇥�0.1898 �0.0526
⇤
T m,

and q3 =

⇥
0.0263 �0.0932

⇤
T m. The right picture of

Fig. 6 depicts the pre-planned Cartesian path and the actual
position trajectory of the sphere in ⌃

p

. The norm of the linear

3The orientation error is evaluated through the geodesic metric on
SO(3): dr = 1/

p
2||log(RTRd)||F rad, where Rd,R 2 SO(3) are,

respectively, the desired and the current rotation matrices, and ||·||F is the
Frobenius norm [32].

4
https://youtu.be/3m9552fV2QU

https://youtu.be/3m9552fV2QU


Fig. 7. Pictures of the steps to reconfigure the sphere pose for the test
1. The top (bottom) pictures display the front (top) view. The red vectors
indicate, step by step, the planned direction of the path to be covered by the
sphere. The white marker on the sphere helps the reader and the operator
to understand its reorientation. The marker is indeed not used by the vision
system, but it is instead useful to roughly appreciate the changes in the
orientation of the sphere.
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Fig. 8. Position and orientation reconfiguration. IPBC tracking error:
||˜q|| (top picture) and ||˜p|| (middle picture). Angular position of the plate
resulting from the control allocation (bottom picture): �p angle (blue line)
and ✓p angle (red line).

position and momenta errors, shown in Fig. 8(b), confirms
the validity of the control technique again. The same gains
from the previous test are used. The position tracking error
is still always under 2.5 cm. The Fig. 8(b) also shows the
evolution of the �

p

and ✓
p

plate angles. The orientation
error, evaluated only at the final time, is now d

r

= 0.1 rad,
confirming that the sphere has been correctly reoriented, as
it can also be appreciated in the video attachment.

VII. CONCLUSION AND FUTURE WORK

An experimental approach for the problem of the nonpre-
hensile rolling manipulation of a sphere on a plate is pro-
posed here. The experimental results display the robustness
and the performance of the proposed approach.

The inclusion of an offline optimization would provide
the path minimizing some specific cost term, such as the
length of the path covered by the sphere, or the control
effort. An optimal planner can be conceived solving a two-
boundary value problem, as proposed in [33]. Moreover,
by exploiting the controllability analysis within Appendix
II and the dynamic model (11) in Subsection IV-B, a proper
controller can be found for this system without explicitly
using the time-scale separation property, despite this is most
likely correct among the available robotic set-ups. Moreover,
the pure rolling assumption is supposed so far: building a
controller by taking into account the friction between the
sphere and the plate to prevent slippage is an attractive
improvement. Finally, the offline planned path might be
refined in runtime.

APPENDIX I: PORT-HAMILTONIAN MODELING

Mechanical systems can be modeled through the pH for-
malism including the information about the energy transfer
explicitly. The Hamilton canonical equations of motion are
given by

˙

q = r
p

H(q,p) (16)
˙

p = �r
q

H(q,p) +G(q)u

with output vector y = G(q)

Tr
q

H(q,p), and Hamiltonian
function H(q,p) = 1

2p
T

M

�1
(q)p + V(q), where p 2 Rn

is the generic momenta vector, q 2 Rn is the generic
configuration vector, M(q) is the symmetric and positive
definite mass matrix, V(q) is the potential energy function,
and G(q) is the input mapping matrix [34]. The resulting
closed-loop pH system is passive considering u as input, y
as output, and the Hamiltonian H as storage function.

APPENDIX II: CONTROLLABILITY ANALYSIS

The sphere-plate dynamics presented in Subsection IV-A
is a linear time-invariant (LTI) system that can be represented
in the state-space form as

˙

x

t

= A

t

x

t

+B

t

u

t

, (17)

where x

t

=

⇥
q

T

t

p

T

t

⇤
T and u

t

2 R2 is the input force
vector. A

t

2 R8⇥8 and B

t

2 R8⇥2 depend on M

t

and
G

t

. Employing the Kalman rank condition for LTI systems,
the sphere-plate dynamics with force inputs (17) results not



controllable since rank (K
t

) = 4 < 8, where K

t

2 R8⇥16

is the Kalman controllability matrix of (17).
On the other hand, the dynamics (11) presented in Sub-

section IV-B can be represented in the nonlinear state-space
form

˙

x

r

= h(x

r

,u
r

), (18)

where x

r

=

⇥
q

T

r

p

T

r

⇤
T and u

r

2 R2 is the input torque
vector. h(·) 2 R8 is a vector function related to the matrices
M

r

and G

r

. The nonlinear dynamics (18) is a control-
affine system satisfying the assumption of vanishing drift
at initial state. Subsequently, employing the STLC criterion
in [35], the dynamics (11) is STLC from the initial state if
its linearization

˙

x

r

= A

r

x

r

+B

r

u

r

, (19)

with A

r

2 R8⇥8 and B

r

2 R8⇥2, is STLC from zero. Let
K

r

2 R8⇥16 be the corresponding Kalman controllability
matrix, the rank condition for LTI systems is now satisfied,
since rank (K

r

) = 8. Consequently, the sphere-plate dy-
namics with torque inputs is STLC.

Full expressions of the presented terms and detailed com-
putations are omitted for brevity.
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