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Abstract— A compass-like biped robot can go down a gentle
slope without the need of actuation through a proper choice
of its dynamic parameter and starting from a suitable initial
condition. Addition of control actions is requested to generate
additional gaits and robustify the existing one. This paper
designs an interconnection and damping assignment passivity-
based control, rooted within the port-Hamiltonian framework,
to generate further gaits with respect to state-of-the-art method-
ologies, enlarge the basin of attraction of existing gaits, and
further robustify the system against controller discretization
and parametric uncertainties. The performance of the proposed
algorithm is validated through numerical simulations and
comparison with existing passivity-based techniques.

I. INTRODUCTION

Passive dynamic walking is the stable gait performed
by an unactuated biped robot, with a proper choice of
the parameters, descending a moderate slope under the
effect of the gravitational field. Firstly investigated in [1],
this phenomenon emerges when an inelastic impact with
the ground dissipates the kinetic energy gain at the end
of every single step, resetting the potential energy to its
initial value. If both the robot and the environment meet
particular geometrical and inertial conditions, the mechanical
(total) energy of the biped is constant during each step,
and thus the whole process evolves indefinitely. A limit-
cycle represents such behavior in the phase plane of the
robot state variables. The interest in studying passive dy-
namic walking is twofold. As first, passive walking exhibits
similarities with human gait features, serving as a testbed
to investigate human locomotion [2]. Secondly, this kind
of motion is energetically efficient compared to the other
state-of-the-art biped locomotion control strategies based on
walking primitives preplanning and on the zero moment point
stability criterion [3]. Since such a passive gait is naturally
exhibited by the unactuated biped robot when the initial
conditions are precisely on the associated limit cycle, adding
a control action is useful for two reasons. The former is the
possibility to enlarge the basin of attraction of the passive
gait. The latter is the possibility to generate additional gaits
to the original one exhibited without actuation. Therefore,
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studying passive dynamic walking can be the starting point
to develop energy-saving control strategies.

A broad overview about how generic legged robots are
modeled and how they are controlled is given in [4]. In
particular, a mix between mechanical design and learning
algorithms is used in [5] to find an efficient control policy.
A passive dynamic for a multiple degrees of freedom un-
deractuted biped is generated in [6] by combining a passive
controller and a proportional-derivative one.

This work focuses on a specific passive walker, the
compass-like biped robot (CBR) which, despite its simple
kinematic structure, exhibits a very complicated dynamic
behavior due to the hybrid nature of the system [7]. An
effective, but still poorly used, strategy to control the CBR
is the energy shaping [8] which represents a dominant class
of methodologies able to exploit the intrinsic passive nature
of such a type of systems. Most of the works proposed
in the literature derive the control laws starting from a
Lagrangian modelling framework. For example, a potential
energy shaping finalized to make the biped’s gait slope
invariant is applied in [9]. A potential energy shaping is
instead employed in [10] to regulate the biped’s forward
walking speed. Besides, a total energy shaping approach
enlarges the basin of attraction of the limit cycle, increases
the rate of convergence, and makes the gait more robust
over uncertainties on the initial conditions. The former cited
works [9] and [10] consider a fully actuated biped robot
model. However, studies on the natural human gait show
that the primary energy source for the forward motion comes
from ankles and that an ankle-only actuation is more ener-
getically efficient than a hip-only one. These biomechanical
considerations are explained in [11], motivating a kinetic
energy shaping control for an underactuated CBR which
creates new walking gaits based on the controlled Lagrangian
methodology [12], [13]. Starting from the port-Hamiltonian
(pH) modelling framework, a similar result is achieved in [3]
where the proposed control strategy is based on the inter-
connection and damping assignment passivity-based control
(IDA-PBC) [14], [15], that is capable to generate robust gaits
characterized by small step lengths and slow forward speed.
In particular, the methodology followed in [3], based on [16],
requires that the open loop inertia matrix does not depend
on actuated generalised coordinates, forcing the authors to
perform a preliminary change of coordinates to get a suitable
dynamic model. Other energy-efficient control approaches
which exploit the pH framework are proposed in [17] for
several walking robots.

This paper proposes a further methodology to control an



underactuated CBR through the IDA-PBC, without solving
the partial differential equations that usually characterize
such a control methodology, and without requiring any
change of coordinates as in [3], since the method applies
to systems with inertia matrices depending on both actuated
and unactuated coordinates. The proposed control law takes
inspiration from [18], where the holonomic rolling primitive
of nonprehensile manipulation is solved, and [19], where the
same methodology is applied to a benchmark system like the
translational oscillator with a rotational actuator system.

The contributions of this work are numerous. i) The pro-
posed methodology is a suitable adaptation of [18] applied
to the robotic legged domain, confirming that there exists a
connection between nonprehensile manipulation and legged
systems as sketched out in [20]: this may open new scenarios
for the control design in both domains. ii) The proposed
methodology, by suitably tuning the gains, can generate
additional gaits to state-of-the-art control designs. iii) The
basin of attraction of existing gaits can be increased. iv) The
proposed methodology is robust to the discretization of the
controller and parametric uncertainties.

II. IDA-PBC IN A NUTSHELL

The pH mathematical model of a planar and underactuated
mechanical system (i.e., with n = 2 state variables and m = 1
control input), neglecting system natural damping, is

(1)
[

q̇
ṗ

]
=

[
O2 I2
−I2 O2

]
∇H(q, p) +

[
02
G

]
u,

where q =
[
q1 q2

]T ∈ R2 is the vector of generalised
coordinates, p =

[
p1 p2

]T ∈R2 is the vector of generalised
momenta, I2 ∈R2×2 is the identity matrix, O2 ∈R2×2 is the
null matrix, 02 ∈ R2 the zero vector, G =

[
1 0

]T ∈ R2 the
input mapping term, and u ∈ R is the control input. The
scalar function H : R4 → R is the Hamiltonian expressing
the total (mechanical) energy (kinetic plus potential) stored
in the system, whose expression is

(2)H(q, p) =
1
2

pT M−1(q)p +V (q),

where V (q) ∈ R is the potential energy and M(q) ∈ R2×2 is
the positive-definite mass matrix whose elements are bi, j(q),
with i, j = {1,2}.

The IDA-PBC is a passivity-based control methodology
which shapes the total energy in such a way that it has
a minimum in the desired equilibrium for the closed-loop
system. Moreover, the control assures the asymptotic stability
of the desired equilibrium by a damping injection if the
passive output is detectable [14]. The IDA-PBC consists of
finding a control law such that the closed-loop dynamics
match a target pH system with dissipation through the
following equations[

q̇
ṗ

]
=

[
O2 M−1(q)Md(q)

−Md(q)M−1(q) J2(q, p)− GkdGT

]
∇Hd(q, p),

(3)

where kd > 0 is a positive damping gain, Md(q) ∈ R2×2 is
the desired mass matrix that must be symmetric and positive
definite (Condition 1), while Hd : R4 → R is the following
desired closed-loop Hamiltonian

(4)Hd(q, p) =
1
2

pT M−1
d (q)p +Vd(q),

with Vd(q) ∈ R the desired potential energy such that
(q∗,02) = argmin Hd(q, p) (Condition 2) in which q? ∈R2 is
the desired equilibrium, and J2(q, p) ∈ R2×2 is the assigned
interconnection skew-symmetric matrix (Condition 3). To
ensure the sought match, a set of partial differential equations
(PDEs) arise, which commonly are the bottleneck of this
methodology. Let G⊥ =

[
0 1

]
∈R1x2 be the left annihilator

of G, these PDEs are

G⊥(∇q(pT M−1(q)p)−Md(q)M−1(q)∇q(pT M−1
d (q)p)

+2J2(q, p)M−1
d (q)p) = 0 (5)

and
G⊥(∇qV (q)−Md(q)M−1(q)∇qVq) = 0, (6)

called respectively kinetic energy and potential energy
matching equations (KE-ME and PE-ME). Such matching
equations must be solved for Md(q), Vd(q), and J2(q, p)
satisfying Conditions 1, 2, and 3. The energy shaping control
law can be written as

(7)ues = (GT G)−1GT (∇qH(q, p)

−Md(q)M−1(q)∇qHd(q, p)+ J2(q, p)M−1
d (q)p),

stabilizing the closed-loop dynamics at the desired equilib-
rium (q, p) = (q?,02) thanks to the choice of Md(q), Vd(q),
and J2(q, p) as mentioned above. Moreover, in order to
guarantee asymptotic stability of the equilibrium point, it
is possible to inject a damping term expressed as udi =
−kdGT ∇pHd(q, p). The sought IDA-PBC law is u= ues+udi
which, as expected, assigns the desired target dynamic (3) to
the system (1). Further details about pH systems, IDA-PBC
and its application to underactuated mechanical systems can
be found in [14] and [21].

A novel control strategy avoiding the explicit solutions
of the PDEs is presented in [18]. The following ad-hoc
parameterization of the closed-loop inertia matrix

Md(q,c1) =

[
m11(q,c1) m12(q,c1)
m12(q,c1) m22(q,c1)

]
, (8)

with mi, j(q,c1) = ∆ai j(q,c1) ∈ R, ∆ is the determinant of
M(q), ai, j(q,c1) is a generic function of its parameters, where
i, j = {1,2}, and c1 ∈Rnc1 is a suitable set of gains to design
the controller, yields the following PE-ME

∇q2V (q)+α(q,c1)∇q1Vd(q,c2)+β (q,c1)∇q2Vd(q,c2) = 0
(9)

where c2 ∈Rnc2 is an additional set of gains useful to design
the controller, while α(q,c1) and β (q,c1) are two scalar
functions. These are defined as linear combination of the
elements of M(q) and Md(q,c1) in such a way as the desired
potential energy Vd(q,c2) can be computed without explicitly
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Fig. 1. Schematic representation of the CBR descending a slope and the
related dynamic parmeters.

solving (9). Once Vd(q,c2) is found, Md(q,c1) is computed
and the KE-ME is solved as an algebraic equation. Finally,
the control law u is designed as defined above. Further details
on this approach can be found in [18].

III. THE COMPASS-LIKE BIPED ROBOT

The CBR is a planar biped composed by two legs joined
by the hip [7]. Its motion is characterised, on determinate
slopes, by a stable gait in the sagittal plane, without actuation
and under the sole action of gravity.

The derived mathematical model only describes the swing
motion of the nonsupporting leg before the impact with the
ground. Afterward, the supporting and nonsupporting leg
are swapped. Following [11], an underactuated compass-like
biped robot (UCBR) is here addressed by supposing the
actuation applied to the ankle of the supporting leg. Referring
to Fig. 1, q1 and q2 are both measured with respect to the
vertical. The angle q1 is always referred to the support leg,
while q2 is always referred to the nonsupport one. Therefore,
these angles are not associated to a physical leg, but they are
referred to the action played by the leg during the gait.

The inertia matrix of the UCBR is given by

M(q) =
[
(mH + m)l2 + ma2 −mlbcos(q1 − q2)
−mlbcos(q1 − q2) mb2

]
,

(10)

with mH > 0 the hip mass, m > 0 the leg mass, a > 0 the
distance between the foot and the leg mass, b> 0 the distance
between the leg mass and the hip mass and l = a+ b. The
potential energy associated to the UCBR is given by

V (q) = g(m(a+ l)+mH l)cos(q1)−gbmcos(q2), (11)

where g> 0 is the gravity acceleration. The pH mathematical
model of the UCBR is then defined as in (1). As mentioned
above, the UCBR exhibits an hybrid dynamic consisting in a
swing phase plus an impact phase. An impact occurs when

yh(q) = l[cos(q1 +ϕ)− cos(q2 +ϕ)] = 0
ẏh(q) = l[sin(q2 +ϕ)q̇2− sin(q1 +ϕ)q̇1]< 0

(12)

where ϕ > 0 is the slope of the ground and yh ∈ R is the
distance between the nonsupporting foot and the ground. As-
suming a plastic and non slipping contact between legs and
ground, as well as an instantaneous transfer from supporting
to nonsupporting one (no double-support phase admitted),
the impact causes this instantaneous change

q̇(t+) = P(q(t−))q̇(t−), (13)

where q̇ =
[
q̇1 q̇2

]T is the velocity vector, t− and t+

indicate the time instants just before and just after the impact
event, respectively. The mapping matrix P(q(t−)) ∈ R2×2 is
obtained applying the law of conservation of angular momen-
tum and it is not reported here for space constraints [7]. The
gait exhibited by the UCBR endows a left-right symmetry,
hence the angles q1 and q2 are swapped and relabeled at each
impact, i.e. when an impact occurs, the former nonsupport
leg becomes the support one and vice-versa [3]. It must
be underscored that such kind of robot is not physically
realizable due to the scuffing between the nonsupport foot
and the the ground. In real prototypes foot scuffing is avoided
by particular mechanical designs, as the one proposed in [22],
whereas in this paper it is avoided by ignoring (12) whenever
the nonsupport leg is behind the support one [11].

IV. IDA-PBC DESIGN FOR THE UNDERACTUATED
COMPASS-LIKE ROBOT

The purpose of this work is to create gaits different from
the passive one employing the control action. The control
strategy is a suitable modification of the procedure presented
in [18], and synthetically recapped in Section II.

Considering the pH mathematical model of the UCBR pre-
sented in the previous section and the procedure illustrated
in Section II, the desired inertia matrix parameterization (8)
leads to the PE-ME as in (9). The crucial step is the choice of
α(q,c1) and β (q,c1) functions. Selecting α(q,c1) = 0 and
β (q,c1) = −1/k2

1, with k1 ∈ R a suitable gain, yields the
following explicit solution for (9)

Vd(q,k1,k2) = k2g(am+ l(m+mH))cos(q1)−k1bmgcos(q2),
(14)

with k2 ∈ R an additional gain. In order to obtain the
solution (14), the interested reader can refer to the Case 3
of the Appendix in [18].

The potential energy shaping stage of the IDA-PBC re-
quires to assign a closed-loop potential energy with the min-
imum at a desired equilibrium. Notice that (14) has exactly
the same structure of (11). The two gains k1 and k2 weight
the components of the open loop potential energy relative
to the nonsupporting and the supporting leg, respectively.
Since the UCBR without the impact resembles a double
inverted pendulum, the most natural choice seems to assign
as equilibrium q∗ =

[
π 0

]T which is the same of the open
loop mathematical model. The gradient vector of Vd is

∇qVd(q,k1,k2) =

[
−gk2(am+ l(m+mH))sin(q1)

bgk1msin(q2)

]
. (15)

Evaluating both (15) and the Hessian ∇2
qVd(q,k1,k2) at q∗,

results in a null gradient vector, whatever the values of the



gains k1 and k2 are, and in a definite positive Hessian matrix
if k1,k2 > 0. Hence, Condition 2 is fulfilled with k1,k2 > 0.

From [18], recalling the chosen functions α(q,c1) and
β (q,c1), the elements of the desired inertia matrix (8) can
be retrieved as

m12(q,c1) =
b12(q)

k2
1

, m22(q,c1) =
b22(q)

k2
1

, (16)

while, differently from [18], m11(q,c1) is left free as

m11(q,c1) = k3
k4∆+ k6 f (q)b12(q)2

k5∆+ k6 f (q)b22(q)
, (17)

with f (q)∈R a function to be selected, and k3,k4,k5,k6 ∈R
some gains. The desired inertia matrix is then computed as
(8). To fulfill Condition 1, Md(q,c1) must be positive definite.
Through the Sylvester criterion, this is satisfied by proper
choices of the function f (q) as well as of the gains for each
of the case studies. In particular, both m1,1(q,c1) > 0 and
∆d > 0, with ∆d the determinant of Md(q,c1), must hold.

Finally, the interconnection matrix is chosen as

J2(q, p) =
[

0 j2(q, p)
− j2(q, p) 0

]
, (18)

that is structurally skew-symmetric fulfilling Condition 3.
The scalar function j2(q, p) ∈ R is computed as in [18]

j2(q, p) =
(
2GT M−1

d (q,c1)p
)−1

(
G⊥∇q

(
pT M−1(q)p

)
− G⊥Md(q,c1)M−1(q)∇q

(
pT M−1

d (q,c1)p
))

.

(19)

Due to space constraints, the explicit value of (19) is not
displayed. However, it is possible to show that such a term is
not affected by any singularity as instead highlighted in [18].
This peculiarity opens to new possibilities as sketched out
in Section VI. Finally, the energy shaping control law (7)
can be computed. To be more rigorous, the stability of the
limit cycle arising from the impact between the biped and
the ground should be assessed through Poincaré map method
or via constructive tools as the one proposed in [23] for the
orbital stabilization of underactuated nonlinear systems, but
this is left as future work.

V. CASE STUDIES

In this section, three different case studies are proposed
and the relative numerical simulations are performed to test
the ability of the controller in generating new gaits as well as
to evaluate the robustness respect to parametric uncertainties.
A comparison with the gaits generated in [11] is carried out.

The chosen model parameters are mH = 10 kg, m = 5 kg,
a = 0.5 m, b = 0.5 m, g = 9.8 m/s2, and ϕ = 3 deg. Two
parameters are introduced to describe a gait, namely the step
length S and the period T . The former is the step length
evaluated every two foot-ground impacts, while the latter is
the duration of each single step.

The simulations are carried out in the MATLAB environ-
ment on a standard personal computer, and they last 30 s. The
dynamic model of the UCBR (1) is numerically simulated
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Fig. 2. Case Study 1. Three different limit cycles during a test carried out
in nominal conditions. Green limit cycle represents the passive gait. Red
and blue limit cycles are generated varying k1 and k2. The black arrows
indicate the evolution of the state trajectories in forward time. The top arcs
represent the evolution of q2, while the bottom ones represent the evolution
of q1 in an entire gait. The black vertical axes indicate the discontinuities
caused by an impact with the ground.

through the ODE45 function of MATLAB with the event
detection option active so as to evaluate the hit with the
ground. The designed controller is implemented at a discrete
time step of 0.01 s. A video displaying the obtained gaits is
available as a multimedia attachments.

A. Case Study 1

This first case study shows the possibility of generating
new stable gaits, compared to the passive gait naturally
exhibited by the UCBR, by suitably tuning the controller
gains. Three different set of gains are tested. The following
gains are kept fixed k4 = b11 = 16.25, k5 = 1, and k6 = kd = 0
while k3 = 1/k1. This choice yields m11(q,k1) = b11/k1 > 0,
and ∆d = b11(q)b22(q)/k2

1−b12(q)2/k2
1. Substituting (10), it

becomes

∆d =
a2b2m2 +b2l2m2 +b2l2m mH −b2l2m2 cos(q1−q2)

2

k2
1

(20)
which is always positive because 0 ≤ b2l2m2(1− cos2(q1−
q2)) ≤ b2l2m2. Hence, the desired inertia matrix is definite
positive because both m11(q,k1)> 0 and ∆d > 0. Therefore,
Condition 1 is satisfied.

The tuning of the gains k1 and k2, directly involved in the
potential energy shaping, are shown in Fig.2. This figure is
obtained fixing k4, k5, and k6 and trying to isolate the effect
of the potential energy shaping on the final gait. Differently
from [11] and [3], where only a kinetic energy shaping
controller is implemented, here the total energy shaping
results in a sharp variation of the closed-loop gait. The choice
k1 = 0.85 with k2 = 1 creates the blue limit cycle in Fig.2,
while k1 = 1.2 and k2 = 0.5 the red limit cycle in Fig.2.
These differ from the passive limit cycle obtained with the
controller turned off, which is equivalent to set k1 = 1 and
k2 = 1 (green limit cycle in Fig.2).

B. Case Study 2

This case study shows the capability of the controller to
generate both symmetric small gaits and symmetric big gaits,
improving what obtained in [11] and [3].
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Fig. 3. Case Study 2, Small Gait. Limit cycle during a test carried out
with nominal conditions.

Small Gait. The first simulation generates a slow symmetric
gait characterized by a small step and a big period.

The gains are experimentally tuned as k1 = 1.1, k2 = 1,
k3 = 1/k1, k4 = 0.04, k5 = 0, k6 = 1, and kd = 0.1. The
function f (q) in (17) is chosen equal to 1 yielding

m11(q,k3,k4) = k3
k4∆+b12(q)2

b22
> 0. (21)

After some calculations, ∆d is equal to k4∆/k2
1 > 0. The

Condition 1 is thus fulfilled and the resulting controller is
similar to the one proposed in [3], apart from the potential en-
ergy shaping stage and the damping injection. The designed
controller leads to a symmetric gait with S = 0.0417 m and
T = 1.149 s, which is slower than the slowest symmetric one
proposed in [3] having S = 0.2012 m and T = 0.9996 s. The
gait parameters S and T converge to these very small values
as in Fig.4, implying the crouched limit cycle of Fig.3.

Large Gait. Complementary to the previous test, now the
goal is the generation of large and fast steps. For this task,
f (q) = sin(q1−q2) which transforms (17) into

m11 = k3
k4b11b22−b2

12(k4− k6 sin(q1−q2))

k5(b11b22−b2
12)+ k6 sin(q1−q2)b22

, (22)

where dependencies are suppressed and ki > 0, with
i= {3,4,5,6}. Folding (10) into the numerator of (22), called
m11n, yields m11n = a2b2k4m2 + b2k4l2m2(1 − cos2(q1 −
q2)) + b2k4l2mmH + b2k6l2m2 cos2(q1 − q2)sin(q1−q2).
Since 0 ≤ b2k4l2m2(1 − cos2(q1 − q2)) ≤ b2k4l2m2,
it is possible to write m11n ≥ (a2m + mH)b2mk4 +
b2k6l2m2 cos2(q1 − q2)sin(q1−q2) ≥ (a2m + mH)b2mk4 −
b2k6l2m2. Therefore, m11n > 0 if k6 < (a2m + mH)k4/l2.
On the other hand, using (10), the denominator of
(22) is m11d = a2b2k5m2 + b2k5l2mmH + b2k5l2m2(1 −
cos2(q1 − q2)) + b2k6msin(q1−q2). Since 0 ≤
b2k5l2m2(1 − cos2(q1 − q2)) ≤ b2k5l2m2, it is possible
to write m11d ≥ (a2m+ l2mh)b2mk5 + b2k6msin(q1−q2) ≥
(a2m + l2mh)b2mk5 − b2k6m. Therefore, m11d > 0 if
k6 < k5(a2m + l2mH). In conclusion, to assure m11 > 0
it is sufficient to choose the gain k6 such as both
k6 ≤ (a2m+mH)k4/l2 and k6 < k5(a2m+ l2mH). The case
of both m11n < 0 and m11d < 0 was not considered, and thus
the found solution is conservative.
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Fig. 4. Case Study 2, Small Gait. Time histories of the gait parameters.

To ease the computations, selecting k3 = 1/k1 and k5 = 1
yields

∆d =
∆(b22k4−b2

12)

k2
1(∆+b22k6 sin(q1−q2))

. (23)

Folding (10) into the numerator of ∆d yields ∆dn =
∆(mb2k4−m2l2b2 cos2(q1−q2))≥ ∆(mb2k4−m2l2b2). This
is positive when k4 > ml2. On the other hand, using (10),
the denominator of (23) is ∆dd = k2

1(mH l2mb2 +m2b2l2 +
m2a2b2−m2l2b2 cos2(q1− q2) +mb2k6 sin(q1− q2)). Since
0 ≤ m2l2b2(1− cos2(q1 − q2)) ≤ m2l2b2, it is possible to
write ∆dd ≥ k2

1(mH l2mb2 +m2a2b2 +mb2k6 sin(q1− q2)) ≥
k2

1(mH l2mb2 +m2a2b2−mb2k6). This is positive when k6 <
mH l2 +ma2. In conclusion, to assure ∆d > 0 it is sufficient
choosing k4 > ml2 and k6 < mH l2 +ma2. The case of both
∆dn < 0 and ∆dd < 0 was not considered.

To recap, with the choice k3 = 1/k1 and k5 = 1, Condition
1 holds when k6 < mH l2 +ma2, k6 ≤ (a2m+mH)k4/l2, and
k4 > ml2 are all fulfilled.

Hence, the selected gains ensuring Condition 1 are k1 =
1.7, k2 = 1, k3 = 0.588, k4 = b11 = 16.25, k5 = 1, k6 = 6.2,
and kd = 0. The simulation shows the generation of a sym-
metric gait characterised by T = 0.6806 s and S = 0.8738 m,
as depicted in Fig. 6. This gait is faster than the one in [11]
(T = 0.7118 s, S = 0.7784 m). The two controllers are
compared in Fig. 5 where it is visible that the area of the
cycle limit obtained through the controlled Lagrangian (CL)
method in [11] is almost totally contained by the area of
limit cycle generated by the proposed approach.
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Fig. 5. Case Study 2, Large Gait. Limit cycles during a test carried out with
nominal conditions. In blue, the gait generated with the proposed IDA-PBC
approach. In red the gait generated with the CL method.
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Fig. 6. Case Study 2, Large Gait. Time histories of the step length and
the step period during a test carried out with nominal conditions.
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Fig. 7. Case Study 3, Large Gait, Parametric Uncertainty. Limit cycle
during a test carried out with a 10% uncertainty on both masses and lengths.
In blue, the large gait generated form Case Study 2, without any parametric
uncertainty. In red, the gait generated with the same controller and with the
same gains, in presence of parametric uncertainty.
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Fig. 8. Case Study 3, Large Gait, Parametric Uncertainty. Time histories
of S and T during a test carried out with a 10% uncertainty on both masses
and lengths. In blue, the gait without any parametric uncertainty. In red, the
same gait with uncertainty. The UCBR with parametric uncertainties results
to be slower since it performs 41 steps versus the 43 steps of the UCBR
without parametric uncertainties within the same simulation time.

C. Case study 3

The proposed controller is also robust with respect to
parametric uncertainties. In particular, this is designed on the
nominal values of the dynamic parameters, while the ODE45
function simulating the system dynamics sees an increment
of 10% for the masses and the lengths of the UCBR.

A different, but symmetric, gait is generated with the same
gains proposed in the Case Study 2 for the generation of large
and fast steps. The gait parameters time histories testify the
robustness of the approach as showed in Fig.8. It is possible
to notice that the gait is symmetric and also it is very close to
the gait obtained in case of perfect knowledge of the inertial
and kinematic parameters of the system as depicted in Fig.7.

VI. CONCLUSION AND FUTURE WORK

An IDA-PBC was designed in this paper for an UCBR.
The objective of the work was to generate further gaits
with respect to available state-of-the-art methodologies and
robustify the system against uncertainties. Numerical sim-
ulations and comparisons validated the approach. Future
work will be twofold. Form a theoretical point of view, it
would be interesting investigating how to solve the numerical
singularity affecting [18] by generalizing the solution found
in this paper for the biped system. Besides, it would be
challenging to apply the proposed approach to a biped robot
with more degrees of freedom than a compass-like robot.
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