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Abstract— This paper addresses the robust gait control for
planar and passive biped robots using approaches based on en-
ergy properties. Energy pumping-and-damping passivity-based
control is used to increase the robustness against uncertainties
on the initial conditions of the passive gait exhibited by
planar biped robots. The stability analysis is carried out by
exploiting the system’s passivity and the hybrid zero dynamics
method. Besides, the proposed approach is applied to new
gaits that are generated using interconnection and damping
assignment passivity-based control. The performance of the
proposed design is evaluated through numerical simulations
and compared with an existing technique.

I. INTRODUCTION

Firstly studied in [1], passive dynamic walking is the
stable walk exhibited by a planar biped robot descending
a shallow slope under the gravitational field’s effect only.
Planar biped robots are commonly studied as hybrid systems,
characterized by continuous dynamics (usually referred to
as swing phase) alternating with discrete events (the foot
strikes). During the swing phase, if non-conservative forces
are absent, the system’s total energy is conserved, and
dissipation only occurs when a foot lands on the ground
and non-conservative forces arise. Passive dynamic walking
originates from the mechanical energy conservation during
the swing phases, and from the restoration of the potential
energy to its initial value at the end of every single step.
This comes out from the inelastic impacts with the ground
dissipating the kinetic energy gained during the swing phase.
Ideally, if both the robot and the environment meet particular
geometrical and inertial conditions, the whole process can
evolve indefinitely [1], [2], [3], [4].

The study of passive dynamic walking attracted many
researchers due to the similarities with human gait features,
serving as a testbed to investigate human locomotion [5], [6].
Moreover, from an energetic viewpoint, exploiting the pas-
sivity of such kind of motion means designing more effi-
cient control strategies compared to the other state-of-the-
art biped locomotion control approaches based on walking
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primitives pre-planning and the zero moment point stability
criterion [7].

Energy shaping is a method belonging to the class of
passivity-based control (PBC) techniques that exploit the
intrinsic physical and passive properties of the systems [8].
It was proved to be an effective, though poorly used,
strategy to control passive walkers. Passive (uncontrolled)
gaits suffer from weak stability properties since the associ-
ated limit cycles (i.e., the solutions representing the gaits
in the phase plane) usually exhibit a restricted basin of
attraction. Therefore, the advantage of shaping the energy
during continuous dynamics is twofold. First, the passive
gait’s basin of attraction can be enlarged. Second, the gait
can be modified by changing the way the robot and the
ground exchange energy [9], [10], [11], [12]. All the works
cited so far exploit methodologies (e.g., the controlled sym-
metries (CS) and the controlled Lagrangians (CL)), which
are based on the Lagrangian modeling framework. Recently,
the port-Hamiltonian (pH) modeling framework was shown
to be efficient in designing PBC strategies by explicitly
taking into account the system’s energy. The first attempt
to exploit the pH framework was proposed in [13]. Later, a
control strategy based on the interconnection and damping
assignment passivity-based control (IDA-PBC) [14], [15],
capable of generating robust gaits characterized by small step
lengths and slow forward speed, was proposed in [7]. An
underactuated compass-like biped robot (CBR) was instead
controlled through the IDA-PBC in [16], without solving the
partial differential equations that usually characterize such a
control methodology and without requiring any change of
coordinates as in [7].

The revised methodologies ignore the hybrid nature of
the system during control synthesis. Passivity-based control
frameworks have been developed to control mechanical sys-
tems in absence of impacts. Ensuring asymptotic stability
to the desired energy level generally suffices to such a
class of systems. IDA-PBC guarantees that target dynam-
ics are asymptotically stabilized at an equilibrium point
corresponding to the minimum of the target Hamiltonian,
for instance. As outlined in [17] and [18], the methods
stabilizing a biped robot to a specific gait construct a zero
dynamics manifold. The reset map characterizing hybrid
systems pushes away solutions that do not lie in the zero
dynamics manifold [17], [19]. Hence, the convergence of
the continuous dynamics to the manifold must be sufficiently
rapid to counteract the repulsive behavior of the reset map.
CS, CL, and IDA-PBC neither construct a zero dynamics
manifold nor guarantee exponential convergence of continu-



ous dynamics to it. Hence, they can stabilize the biped robot
to neither a specific gait nor a target energy level (due to the
presence of impacts), while they effectively generate new
gaits. The approaches that duly take into account the hybrid
nature of the system should address closed-loop exponential
stability [17]. Some of them ensure exponential convergence
by exploiting the notion of hybrid zero dynamics (HZD) [20],
[21], [22]. While these preliminary works were based on an
input-output linearization, an approach based on a Lyapunov
analysis was proposed in [19], where rapidly exponentially
stabilizing control Lyapunov functions (RES-CLF) were used
to make the output dynamics converge exponentially fast to
the HZD manifold with a rate of convergence which can be
modified by gain adjustments. Later, the same framework
was extended in [18] to achieve energy-shaping to increase
the robustness of the passive gait of the CBR to perturbations
in initial conditions. Based on the HZD, but not relying
on RES-CLF, the work in [23] proposed a passivity-based
approach to keep the natural dynamics of the system and
enhance the performance in terms of robustness and control
effort minimization.

This paper uses HZD and energy pumping-and-damping
passivity-based control (EPD-PBC) [24] to achieve exponen-
tial stabilization to a reference energy value for a planar
passive walker. A variant of the EPD-PBC was proposed
in [25] as a modification of the IDA-PBC to generate stable
limit cycles for pH systems meeting specific requirements
on the model structure. Besides, the EPD-PBC was exploited
in [26] to generate new gaits for a CBR through dissipative
forces. Differently from the approach presented in this work,
the hybrid nature of the system was not explicitly taken
into account during controller design in [26]. The target
energy in the EPD-PBC can be related to the passive gait
or another one if an inner energy shaping control loop is
applied. The use of energy shaping is motivated since it
is necessary to change the way the robot and the ground
exchange energy [4]. Because of the pH formalism and the
biped underactuation, IDA-PBC will be here exploited.

The paper’s contributions are now listed. i) The control
strategy used to exponentially stabilize the system to a target
energy value is well known in the literature since it has been
already used to tackle several control tasks. Nevertheless, to
the best of the authors’ knowledge, this is the first time that
it has been used within the HZD framework. This represents
the first attempt to join energy-based methodologies, rooted
in the pH formalism, with an approach explicitly developed
to control biped robots. ii) The proposed control strategy
can be used without any further modification combined with
an energy-shaping control strategy to modify the system’s
total energy, enlarging the spectrum of potentially achievable
robust gaits. iii) The stability analysis is based on the
invariant set theory rather than Poincaré maps, leading to
less conservative [27] and almost global results.

II. PROBLEM DESCRIPTION

Conservation of energy is the physical principle that
motivates passive dynamic walking [1], [3]. Consequently,

a limit cycle can be regarded as an energy-conserving orbit
corresponding to a specific mechanical energy value E∗ ∈
R [1], [2], [3], [4], [18]. One of the main drawbacks of limit
cycle walking is finding the correct set of initial conditions,
such as triggering the limit cycle. Besides, initial conditions
related to a limit cycle are extremely sensitive to perturba-
tions. The objective of this work is to provide a methodology
to extend the range of possible initial conditions leading to
periodic walking, i.e., to enlarge the basin of attraction of a
given limit cycle. As shown in [18], one possible approach
is to build an output variable, namely e = E(x)−E∗, with
E(x) ∈R the energy of the system. Suppose that the system
has been written in the hybrid zero dynamics form, as in [18].
If the output dynamics ė converge exponentially fast to zero,
then, based on results about HZD for planar bipeds [20],
[21], the set of states such that e = 0 and ė = 0 constitutes
a hybrid invariant zero dynamics manifold. Such states are
those for which E(x) = E∗, hence the system has been expo-
nentially stabilized at the energy level E∗ with the beneficial
effects that its basin of attraction has been enlarged, as
illustrated in [18]. To prove stability for the overall system,
Poincaré maps are used in [18]. One drawback of employing
such a method is that it recasts the stability analysis to a
standard equilibrium stabilization problem, leading to very
conservative results [27]. Conversely, it is better to exploit the
notion of stability of an invariant set, which is the closed orbit
associated with the periodic solution [25], [27]. Moreover,
since the Poincaré maps require linearizing the system at the
fixed point, they hold only locally in a neighborhood of the
point. This is in contrast with the target of this paper, that
aims at enlarging the periodic solution’s basin of attraction.
Indeed, invariant-set theorems lead to global or almost global
stability results [28]. In the next sections, it will be shown
how an existing control methodology, namely the EPD-PBC,
can be designed to overcome the limitations of the approach
presented in [18], in the sense that it yields less conservative
stability results based on the invariant-set theory.

III. TECHNICAL BACKGROUND

A. Hybrid Systems and Underactuated Mechanical Systems
in pH Formalism

In this paper, the following hybrid system with impulse
effects {

ẋ = f1(x)+g1(x)u(x) x ∈ X\S
x+ = ∆(x−) x− ∈ S

(1)

is considered, where x∈X is the state, x− and x+ indicate the
states just before and after an impact, respectively, X ⊆ RN

is the admissibility domain of continuous dynamics with
cardinality N, f1 : X → X is the C1 vector field describing
continuous dynamics, g1 : X → X is the C1 vector field
mapping the control input u(x) to the continuous dynamics,
S is the switching surface, and ∆ : S→ X is the C1 reset map.

Consider an underactuated mechanical system with n
degrees of freedom and m = n−1 control inputs. Let q ∈Rn

and p ∈ Rn be the vector of generalized coordinates and



momenta, respectively. Let H(q, p) : R2n → R be the Hamil-
tonian function, H(q, p) = 1

2 pT M−1(q)p+V (q), expressing
the total mechanical energy stored in the system given by the
sum between kinetic and potential energy, V (q)∈R. The pH
model of such underactuated mechanical system is[

q̇T ṗT ]= J(q, p)∇H(q, p)+G(q)u(q, p), (2)

where J(q, p) = −JT (q, p) ∈ R2n×2n is the skew-symmetric
interconnection matrix mapping the principle of conservation
of energy. The control input u(q, p) ∈ Rm is modulated by
the input mapping matrix G(q) =

[
0m×n GT

p (q)
]T , where

Gp ∈ Rn×m is a full rank matrix.
Biped robots with rotating point feet belong to the class of

underactuated mechanical systems [17, Section 3.4]. Point-
feet synthesizes some of the properties encompassed by
human feet although they are more difficult to be controlled.
This work deals with planar biped robots equipped with un-
actuated point-feet because they represent an interesting case
study for any locomotion control design methodology [17].
During the swing phase, the stance leg is continuously in
contact with the ground, behaving like a pivot. The other
one, the swing leg, moves freely in the air. Therefore,
the interaction between the stance foot and the ground is
uncontrolled, yielding to one degree of underactuation in the
related model. Swing dynamics are modeled through the pH
formalism, as in (2). This choice is motivated by the rela-
tionship connecting energy and dynamics, which has given
room to plenty of energy shaping control methodologies well
suited for underactuated mechanical systems.

Remark. J(q, p) in (2) has been expressed in a general
form intentionally, without assuming any particular structure
for it. With such a choice, it can represent both uncontrolled
and controlled mechanical systems, as long as the latter ones
preserve the principle of conservation of energy character-
izing uncontrolled systems. This can be achieved using an
energy shaping control action, carried out by IDA-PBC, for
instance, like the one that will be employed in the Case Study
II of Section V.

B. Energy Pumping-And-Damping PBC

A general way to define an EPD-PBC controller for a pH
system is through the following control action [24], [26]

upd(q, p) =−Kpde(q, p)GT
p (q)∇pH(q, p), (3)

where Kpd ∈Rm×m is a positive definite gain matrix and e∈R
is a suitable scalar variable depending on q and p. This must
be appropriately selected such that

e(q, p) =

{
e(q, p) = 0 if (q, p) ∈ Z,
e(q, p) 6= 0 if (q, p) ∈ R2n−Z,

(4)

where Z ⊂R2n is a given subset of the state-space which has
to be defined. Substituting (3) in (2) yields the closed-loop
system [

q̇T ṗT ]= [J(q, p)+Rpd(q, p)]∇H(q, p) (5)

where

Rpd(q, p) =
[

On On
On −Gp(q)Kpde(q, p)GT

p (q)

]
∈ R2n×2n (6)

is the pumping-and-damping matrix. Rpd(q, p) is positive
definite in some regions of the state space, it is negative
definite in other ones, and it is zero only when e(q, p) = 0.

IV. CONTROLLER DESIGN

A. EPD-PBC Design within HZD Formulation

Let N = 2n and x = (q, p) ∈ R2n. The continuous dynam-
ics (1) is modeled as the continuous pH system (2), that is

f1(x)+g1(x)u = J(x)∇H(x)+G(x)u(x). (7)

Designing u(x) = upd(x) in (3), with

e = H(x)−H∗, (8)

where H∗ ∈ R is a constant target Hamiltonian, the hybrid
system (1) with the continuous dynamics (7), the control
input (3), and the output variable (8) is

ẋ = f1(x)+g1(x)upd(x,e) (x,e) ∈ X\S,
ė = f2(x)+g2(x)upd(x,e) (x,e) ∈ X\S,
x+ = ∆(x−) (x−,e−) ∈ S,
e+ = ∆(e−) (x−,e−) ∈ S,

(9)

where f1(x) = J(x)∇H(x), f2(x) = ∇xH(x)T J(x)∇xH(x),
g1(x) = G(x), and g2(x) = ∇xH(x)T G(x) are assumed to be
locally continuous Lipschitz functions. Notice that the first
equation in (9) can be equivalently written as in (5). Variable
e is usually referred to as output (sometimes also called
transverse variable), while x are referred to as zero dynamics
variables [19]. The dependence of upd on e has been been
made explicit in (9). The zero dynamics submanifold is
the restricted subset Z ⊂ X defined as Z = {x ∈ X |e = 0}.
Additionally, if ė = 0, then the zero dynamics submanifold
Z is forward invariant (i.e., it is invariant under the swing
dynamics only). If the biped is planar, it is sufficient to guar-
antee the exponential convergence of the output dynamics to
Z and make it hybrid invariant, that is invariant under both
swing dynamics and foot-strikes [21], [22].

As consequence of (8), the sign of the pumping-and-
damping matrix Rpd(x) changes accordingly to the actual
value of H(x) respect to the target value H∗. The following
condition

Rpd(x)e =−Gp(q)KpdGT
p (q)e

2 ≤ 0 (10)

always holds true.

B. Zero Dynamics Stability Analysis

The goal of this section is to show that, through (3), the
zero dynamics submanifold is both forward invariant and at-
tractive, and that the closed-loop system (9) is exponentially
stable to it.

Firstly, assume that Z is the largest invariant in the set

{x ∈ X |∇T
x H(x)Rpd(x)∇xH(x)e = 0}. (11)



To prove the exponential stability of the closed-loop sys-
tem (9) respect to Z, the storage function

V (e) =
1
2

e2 ≥ 0, (12)

positive everywhere except for e = 0, is selected. The output
variable e constitutes an isolated minimum for the storage
function V (e) in the zero dynamics submanifold Z, that is

∇eV (e)|x∈Z = e|x∈Z = 0,

∇
2
eV (e)|x∈Z = 1 > 0.

(13)

Then, the time derivative of V (e) is

V̇ (e) =
∂V (e)

∂e
ė = eė, (14)

while the time derivative of the output dynamics is

ė = Ḣ(x)− Ḣ∗ = ∇xH(x)T ẋ

= ∇xH(x)T (J(x)+Rpd(x))∇xH(x)

= ∇xH(x)T Rpd(x)∇xH(x)

=−∇pH(x)T Gp(q)Kpd e GT
p (q)∇pH(x)

=−l(x)e,

(15)

with l(x) = ∇pH(x)T Gp(q)KpdGT
p (q)∇pH(x) ≥ 0. Notice

that J(x) has been exploited to cancel out the related
quadratic term. Substituting (15) into (14) yields

V̇ (e) =−∇pH(x)T Gp(q)Kpde2GT
p (q)∇pH(x)

=−2l(x)
1
2

e2 =−2l(x)V (e)≤ 0.
(16)

Relation (16) with (13) proves the exponential stability of (9)
with respect to Z. Given (13), the following holds

∇
T Hx(x)Rpd(x)∇Hx(x)e|x∈Z = 0. (17)

Attractivity of Z is proved applying LaSalle’s invariance
principle, taking into account (16) and the assumption (11).

To prove the forward invariance of Z, the restriction of the
transverse dynamics to the zero dynamics submanifold must
be considered

ė|x∈Z = f2(x)|x∈Z +g2(x)upd(x,e)|x∈Z . (18)

Since e = 0 in Z, then upd(x,0)|x∈Z = 0. Besides, since ė =
Ḣ(x), (18) can be rewritten as Ḣ(x)|x∈Z = f2(x)|x∈Z . Since
the mechanical energy is constant during swing dynamics
due to the absence of dissipation, then ė|x∈Z = Ḣ(x)|x∈Z = 0
holds, proving the forward invariance of Z which, now, can
be profitably defined as

Z = {x ∈ X |e = 0, ė = 0}. (19)

Finally, hybrid invariance is automatically achieved in (15),
where output dynamics convergence exponentially fast to Z,
under the control law (3). Moreover, the exponential rate of
convergence can be adjusted by profitably tuning the gain
matrix Kpd in l(x).

The benefits of such results are twofold.
1) Suppose that a limit cycle exists and it is a periodic

solution of the zero dynamics. In that case, if the

related mechanical energy belongs to the zero dynamics
submanifold, its stability is automatically guaranteed by
using the stability theory of invariant sets, instead of
Poincaré map analysis [25].

2) The stability of the closed-loop system restricted to the
zero dynamics is the prerequisite to guarantee the sta-
bility of the closed-loop system’s full-order dynamics.

C. Full-Order System Stability Analysis

The results of the previous section hold only for the hybrid
zero dynamics and the associated submanifold Z. Once that
the exponential stability of a periodic solution is guaranteed,
and that such a property is valid under continuous and
discrete dynamics, this result must be transferred to the full
order system, i.e., system (9) not restricted to Z. Since (9)
meets the hypotheses outlined in [23], it is possible to
conclude that the exponential stability of a periodic orbit
belonging to the hybrid restriction dynamics implies the
exponential stability of the same periodic orbit for the full-
order system (for the detailed demonstration, see [23]). In
particular, the following conditions must be verified.

1) For Z in (19), S∩Z is a (2n− 1) dimensional hybrid
invariant submanifold of Z.

2) System (9) has a exponentially stable periodic orbit O
contained in Z, which is transverse to the reset map S.

3) The storage function V (e) is positive definite locally
around the orbit O, it decreases during swing dynamics
as showed in (16), and its value is zero on the orbit.

4) If the scalar e is measured right after any impact and
it is defined as ei, where i stands for the i− th impact
event, then the sequence of the storage functions V (ei),
evaluated at every impact, is decreasing.

The first condition is true because Z is a hybrid invariant
submanifold. Conditions 2 and 3 above are satisfied if the
energy value of a given periodic orbit O, transverse to S
by hypothesis, belongs to Z, as demonstrated in (16). Fi-
nally, since an uncontrolled passive walker dissipates kinetic
energy at every impact (supposed perfectly inelastic), while
mechanical energy is constant during swing dynamics, H(x)
decreases to the passive value at every foot strike. When the
biped is controlled using upd(x) in (3), with e in (8), the
only effect is in the swing phase, where V (e) exponentially
decreases to zero as pointed out in (16). Hence, summing up
the dissipation during the continuous dynamics, achieved via
control, and the dissipation naturally taking place at discrete
events, the consequence is that V (ei) constitutes a decreasing
sequence of values.

V. CASE STUDIES

In this section, numerical simulations are carried out to
evaluate the performance of the proposed approach.

The CBR depicted in Fig. 1 is used with parameters mH =
10 kg, m= 5 kg, a= 0.5 m, b= 0.5 m, g= 9.8 m/s2, and φ =
3 deg. More details about the CBR can be found in [12], [16].
The CBR state is described by q1 ∈ R, which is the stance
leg variable, and by q2 ∈R which is the hip variable reported
to the swing leg. Both of them are calculated with respect to
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Fig. 1. Physical idealization of the CBR.

the vertical to the ground. The robot is underactuated with
the control torque applied only at the hip joint.

The simulations are performed on a standard personal
computer in the MATLAB environment. The dynamic model
of the CBR is numerically simulated through the ODE45
routine of MATLAB with the event detection option active
to evaluate the foot-ground hit. The designed controller is
implemented at a discrete-time step of 0.01 s. The average
computation time of the controller is ≈ 0.12 ms with a stan-
dard deviation of ≈ 0.41 ms. The simulations last 20 s. In the
literature, a step is defined as two consecutive foot-ground
impacts [3], [7], [12]. Then, two parameters characterize
the gaits of the CBR: the space covered on the slope by
each step, which is referred to as step length, S > 0, and its
duration, which is referred to as step period, T > 0.

A. Case Study I

In the first case study, only the EPD-PBC is applied,
without any energy shaping, to test the performance in
terms of robustification of the passive gait to perturbed
initial conditions. Passive gait is exhibited by the CBR
without control, starting by the initial conditions x0P =[
0.2187 −0.3234 −1.0918 −0.3772

]T where the first
two components are the generalized coordinates, while the
last two are the generalized velocities. Initial conditions
have been defined in terms of coordinates and velocities (as
in [18]) rather than in terms of coordinates and momenta.
Notice that the momenta are linearly related to the velocities
through the inertia matrix. Passive gait parameters are known
to be SP = 0.5347 m, TP = 0.7347 s, HP = 153.0787 J for
the chosen CBR [4].

EPD-PBC enlarges the basin of attraction of the passive
gait. Firstly, uniform perturbations on initial conditions have
been considered. Three distinct sets of perturbed initial
conditions were obtained multiplying x0P by 0.8 (small
perturbation), 0.7 (medium perturbation), and 0.6 (large
perturbation), respectively [18]. The control gain for each
initial condition has been experimentally tuned as kpd = 1,
kpd = 10.2, and kpd = 8.4, respectively.

Fig. 2 shows the limit cycle in the phase plane
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Fig. 2. Case Study I. Limit cycle comparison. Red arcs represent the
passive limit cycle. Green arc represents the component of the limit cycles
relative to q1, while blue arc represents the component of the limit cycles
relative to q2 during a test carried out starting by perturbed initial conditions.
Black dots represent initial conditions. Both green and blue arcs converge
to red ones using EPD-PBC with kpd = 8.4.

of the controlled CBR starting from 0.6xoP =[
0.1312 −0.1940 −0.6551 −0.2263

]T with kpd = 8.4.
Both the part of the cycle related to the swing angle (blue
line) and the one associated with the stance angle (green
line) converge to the passive limit cycle (red line). The CBR
recovers the passive gait after a large perturbation on the
initial state thanks to EPD-PBC, which thus enlarges the
basin of attraction of the passive limit cycle. The periodic
motion associated with the first leg, which is the swing one
at the beginning of the simulation, is depicted in Fig. 3
(since the gait is symmetric, this figure holds for the other
leg also, though with a different initial condition).
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Fig. 3. Case Study I. Limit cycles comparison for the first leg. Red arcs
represent the passive limit cycle. Same legend and condition of Fig. 2 hold.

Fig. 4 shows the convergence of the storage function V (e)
to zero. At every impact, the value of V (e) is smaller than (or
equal to) the value of the same function at the previous foot
strike. This gives a numerical confirmation that the passivity
of the switched systems is a right hypothesis.

To further enlighten an increment of robustness to ini-
tial conditions, nonuniform perturbations have been taken
into account (i.e., distinct perturbations on every compo-
nent of x0P were considered). Ten further simulations have
been carried out, each one starting from a different initial
condition x0Pi with i = 1, . . . ,10, obtained multiplying x0P
by as many diagonal matrices whose elements have been
randomly computed to lie in the set {0.8,0.7,0.6}. For the
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Fig. 4. Case Study I. Storage function converges to zero in a simulation
carried out starting from perturbed initial conditions using EPD-PBC with
kpd = 8.4. As highlighted by the box on the right, the value of the storage
function at every impact is less than (or equal to) the value at the previous
impact.

sake of comparison, the same initial conditions have been
used to test performances of the min-norm control (MNC)
employed in [18]. Results of simulations with the EPD-
PBC and the MNC have been collected in TABLE I, where
PG indicates the passive gait while NG indicates a new
gait characterized by SN = 0.5351 m, TN = 0.7282 s, and
HN = 153.12 J. Control gains have been firstly tuned to face
uniform disturbances. Then, they have been tested in all ten
simulations. Those reported in the table are the best ones
for each methodology (kmn = c/ε with c = 1 and ε = 0.5,
see [18] for further details). By inspecting TABLE I, it is

x0P
EPD-PBC MNC

kpd = 1 kmn = 2

1 - -
2 PG NG
3 PG -
4 - -
5 - -
6 PG -
7 - NG
8 - NG
9 - -
10 PG NG

TABLE I
CASE STUDY I. COMPARISON BETWEEN EPD-PBC AND MNC

clear that both methodologies increase the CBR’s robustness
to initial conditions. EPD-PBC is more suitable to increase
the basin of attraction of the passive limit cycle, compared
to MNC. The passive gait has been recovered in 4 out of
10 total trials, with kpd = 1. On the other hand, MNC never
succeeds to recover the passive limit cycle, as evident by the
new gait created. MNC cannot enlarge the basin of attraction
of the passive limit cycle for perturbations equal or greater
than those considered in this paper. Another crucial aspect
is that EPD-PBC avoids robot falling as many times as
done by MNC. In conclusion, EPD-PBC exhibits the same
performances of MNC in increasing the overall robustness,
but it is more effective in recovering the passive gait, as a
consequence of the almost global stability results obtained

via invariant sets theory.

B. Case Study II

Now, EPD-PBC has been applied after energy shaping.
The energy of the system has been shaped through the IDA-
PBC procedure proposed in [29]. Such a methodology was
already deployed in [16] to tackle the CBR gait generation
problem. Energy-shaping is motivated by the possibility to
generate new gaits. As remarked in [3], the gait exhibited by
a CBR emerges from its particular inertial and geometrical
properties. If both inertia and geometry are fixed, as well as
the slope of the incline, the energy flow between the walking
surface and the robot is fixed too, driving biped dynamics
towards its passive limit cycle with energy HP. As shown
in [4], control approaches similar to EPD-PBC and MNC
fail in stabilizing target energies values which significantly
differs from HP (i.e., H∗ >> HP or H∗ << HP). In some
cases, the resulting gait is exactly the passive one while, in
others, new gaits arise, whose energies are different. Then,
to stabilize a desired H∗, it is necessary to change how the
robot and the ground interact, modifying both the inertial
and the geometrical properties of the biped. Therefore, its
kinetic and potential energies must be shaped.

A novel gait has been generated via an inner IDA-PBC
control loop. Since it is not required to add dissipation in this
task, the damping-injection step has been skipped. Hence,
IDA-PBC has been reduced to the energy shaping phase only.
The obtained gait has Sida = 0.5329 m and Tida = 0.7717 s
as parameters, while its energy is Hida = 227.8194 J. Notice
how this gait is significantly slower than the passive one.
The same procedure adopted in [16] has been followed,
appropriately adapted to take into account the actuation at the
hip instead of at the ankle. Simulation has been performed
starting from

[
0.1959 −0.2902 −0.9576 −0.2700

]T ,
which corresponds to a uniform 10% pertur-
bation on the passive initial conditions x0ida =[
0.2177 −0.3224 −1.0640 −0.3000

]T , without
introducing the proposed EPD-PBC. The CBR falls after
few simulation seconds, showing that this novel limit cycle
has a very narrow basin of attraction.

Then, an outer EPD-PBC loop, with kpd = 0.7 and H∗ =
227.8194 J has been implemented. As shown in Fig. 5, the
limit cycle (blue line) converges to the target one (green
line) which partially surrounds the passive one (red line)
placed here as a reference. Thanks to the EPD-PBC, the CBR
keeps walking, demonstrating its usefulness to increase the
robustness of newly generated gaits.

VI. CONCLUSION AND FUTURE WORK

In this paper, a control design using EPD-PBC with HZD
for planar passive bipeds was proposed. It was shown that the
passive gait, and the gaits generated through energy shaping,
can be robustified by using the proposed design. Numerical
simulations validated the approach.

A limitation of the proposed solution is that it is suited
only for passive-dynamic walking (i.e., the biped already
exhibits a passive periodic gait). Future work will focus on
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Fig. 5. Case Study II. Limit cycles comparison for leg1. Red arcs represent
the passive limit cycle without energy shaping. Green arcs represent the gait
generated through IDA-PBC starting from nominal initial conditions. Blue
arcs represent the same gait starting from perturbed initial conditions. Black
dot represents perturbed initial conditions. Blue arcs converge to green ones
using EPD-PBC with kpd = 1.

applying the presented methodology to a planar biped robot
with more degrees of freedom and extend the methodology
to bipeds that are not constrained to move in the sagittal
plane only.
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