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Abstract— In this paper, a 3D robotic ball catching algorithm Several papers make use of Chapman’s strategy — the
which employs only an eye-in-hand monocular visual-systeris  fielder should run at a proper speed to maintain a constant

presented. A partitioned visual servoing control is used irorder increasing rate of the tangent to the ball’s elevation a

to generate the robot motion, keeping always the ball in the éld t tgh ball. | 1% inf . . f@% |
of view of the camera. When the ball is detected, the camera — [© €atch a ball. In [16] reinforcement learning models
mounted on the robot end-effector is commanded to follow a aré used, while an autonomous mobile robot is considered

suitable baseline in order to acquire measurements and praste  in [17] for a ball catching task using a visual feedback cointr
a first possible interception point through a linear estimaton  method based on ainear Optimal Trajectorystrategy.
process. Thereafter, further visual measures are acquiredn In [18] it is introduced an alternative strategy still based

order to continuously refine the previous prediction throuch a ) - . .
non-linear estimation process. Experimental results showhe Chapman's hypothesis, callé&hining Angle of Gazewhich

effectiveness of the proposed solution. requires only the information about the elevation angle of
gaze captured as2D information. Finally, in [19] a motion-
|. INTRODUCTION analysing technique over a finite time is used inside a closed

loop system in order to catch a thrown ball.

Smart sensing, object tracking, motion prediction, oe-lin  \ost of the presented approaches use either a stereo visual
trajectory planning and motion coordination are capabédlit system to solve thaD catching problem or a single camera
required in a robotic system to catch a thrown ball. for the 2D case. This scenario is reasonable becaiBe

One of the first approaches where robot manipulatokgacking of the ball takes benefits from triangulation meiho
are used in catching moving objects can be found in [1jyhile, in the case of a single camera, o information
while in [2] a stereo vision system with a large baseline, ay directly available. However, a high frame rate and optics
extended Kalman filter (EKF) and a ball trajectory predictofyith a good accuracy are required to achieve an accurate and
are exploited so as to build a robotic ball catcher. The samgst trajectory prediction, i.e. a successful catch. Byngsi
system equipped with a dexterous multi-fingered hand isnly one camera, the cost of the equipment can be reduced.
tested in [3], while recently a new version of this work ismoreover, the calibration procedure for one camera is easie
proposed in [4] involving a mobile humanoid and a circulaghan in the stereo case. In [20] the estimation ofDestate
gradient method to detect the ball in the images. of a thrown object by using a least-squares solution startin

In [5], [6] a high-speed multi-fingered hand and a highfrom a sequence of images given by a single camera is
speed stereo vision system are employed to catch a fallipgesented. Further, in [21] a combination of image-based an
ball and a falling cylinder. A robotic arm whose aim isposition-based visual servoing with an eye-to-hand camera
to catch a ball before it fell from a table is COﬂSidered:onfiguration is employed in order to catch a ball whose
in [7], where uncalibrated cameras are employed to traakajectory is estimated through a RLS algorithm.
the moving ball. In [8] the control is applied to achieve si- |n this paper, a monocular robotD ball catching is
multaneously all théD tasks defined for all the images: if all proposed. A robot manipulator with a standard CCD camera
the respective goals defined in the images are accomplishe@unted in an eye-in-hand configuration is driven by visual
at the same time, then th@D task can be interpreted asinformation in order to track a thrown ball. When the ball
successful. A DSP is employed as a computational platforp detected for the first time, the camera is commanded
in the catcher robot system developed in [9], while in [10}o follow a suitable baseline in thaD space in order to
an iterative prediction algorithm determines the final timencrease the estimation robustness. The ball is always kept
and position of a humanoid motion, whose primitives derivgh the camera field of view through a partitioned visual
from studies on human movements. servoing control. During this starting motio2D) information

Other examples of robotic ball catching can be foungs collected and elaborated in order to get a first prediction
in [11], where the ball path is predicted with the help ofof the ball trajectory through a rough linear estimatiorcrsu
a proper neural network. The ball catching task is alsprediction is employed as a starting point for a more precise
considered as a case study in several virtual-reality applrajectory refinement through a nonlinear estimator. Hence
cations [12], [13], [14]. the visual measurements are continuously elaborated &r ord

to update the estimation of the ball trajectory on-line, and
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80125, Naples, ltaly{lippiello, fabio.ruggierd @unina.it prediction of the trajectory, the final catching pose can be



computed by taking into account the ball and the robot A necessary but non sufficient condition to accomplish a
dynamics, in such a way as to accommodate the ball into tiwisual ball catching task is to keep the ball in the field ofwie
robotic hand. Experimental results using a common indalstriof the camera; since with small movements of the camera
robot demonstrate the effectiveness of the proposed soluti orientation (i.e. with small movements of the robot joints)
large parts of the scene can be observed, in the proposed
[1. IMAGE PROCESSING method the partitioned approach presented in [23] has been
ﬁ{nployed. The rotational components of t_he robot mption
an eye-in-hand configuration is continuously elaborated jjyill be reserved to the ball track!ng task, while the posiéb ,
order to identify and extract the position of the ball, ilee t componenf[s of the camera moFlon have to be generated in a
A . . : way as to intercept the ball trajectory.
centroid, in the normalized image plane. The whole image By adopti librated th lized i
is elaborated until the ball is detected, then a dynamic win- y .a opting a calibrate ca_mera, € norm%uze image
dowing technique, which is based on a first order predictiofi°erdinates of the ball centroidl = [ X Y], corre-
algorithm of the ball motion in the image plane, is employe§Ponding to a ball positiop; with respect to the camera
after the first detection, so as to reduce the computation &M e = Oc — Teyeze, are considered
requirement of the image elaboration process. Moreover, by po=[a2° y° 2 }T =X Y 1 }T
adopting the Region of Interest (Rol) camera acquisition
modality, which is available on most of the current USBwheres = [sT 117, The absolute velocity of the camera
cameras, the camera frame rate can be significantly speedgd [pT weT] ', the absolute velocity of the thrown
up (e.g. easily more that00 Hz).

An equalized color-based clustering is adopted in th
image processing, and it makes use of Huge, Lightness,
and Saturation Color Spacs® as to limit as much as possible
the problems related to the variations of the environmental § = L,vi+ L,T(—p)ve,
lightness along the ball path. In details, a binarizaticocpss ) _ ) ) o
is performed through an equalized test, which is based onv{pere L IS (2 > 6) interaction matrix for a point image
histogram of the H-channel and centred around the knov\;ﬁature defined as follows [22]

The images provided by a calibrated camera mounted

= 28,

objectve = [pS* ng]T, both expressed with respect to
%C, and the velocity of the image featukein the image
plane are related by the following linear equation [22]

ball color, together with a min/max S-channel threshold,  [-1/2¢ 0 X/z¢ XY -1-X? Y
After some post-elaboration process employed to reduce the — 0 —1/2¢ Y/ 14+Y? —-XY -—-X|’
image noise, all the blobs present in the binarized image are (1
collected and filtered so as to eliminate the background anhile I'(-) is the following ¢ x 6) matrix
all the blobs with a very small area. If more than one blob

O . : _|-Is S()
overcomes this filtering process, a neighbourhood selectio ()= 0 —I4|°

criteria with respect to the predicted ball position is agop
Finally, the centroid of the selected blob is evaluated as i which I,, denotes ther( x n) identity matrix andS(-) the
good approximation of the ball center. skew-symmetric matrix.

This algorithm can also be executed to find other relevant In the proposed approach, the translational compopgnt
objects in the environment. For example, a color tuned of reserved to move the hand in order to intercept the ball.
the hand of the pitcher is also employed, which allowé\ fifth-order polynomial vector is thus considered so as to
recognizing up to a fully hand occlusion whether the balfompute the desired trajectory for the camera on-linefare.
is held in the hand or it has been thrown, avoiding in sucthe hand, in theSD Cartesian space
a way unnecessary initial movements of the robot. Pealt) = ast® + ast* + agt® + axt® + art + ag,  (2)
[11. ON-LINE MOTION PLANNING AND CONTROL LAW wherep, , is the @ x 1) desired absolute position of the

Without loss of generality, the camera frame is here corfamera, andz, with » = 0,...,5 are § x 1) coefficient

sidered coincident with the hand (end-effector) framehwitvecmrs' Henc_e, the translatlor_lal components of the désire
the camera optical axis aligned with the hand approachincélemera velocity and acceleration are namely equal to
axis. Obviously, being the camera fixed with respect to the Pea = Sast? + daqt® + 3ast® + 2ast + a1, (3)
hand in the considered eye-in-hand camera configuration, . 3 2

a fixed transformation shguld be considered in thge cases Pe.q = 20a5t" + 12a4” + Gast + 2az. @)
where these reference frames are not coincident. Henceln order to update the parametaig on-line, ensuring

in the remainder of the paper, only the camera frame wikh smooth re-planned trajectory when a new interception
be considered. Moreover, the proposed visual control lapoint is available, the continuity between the current mo-
belongs to the category namdesolved-Velocity Image- tion state and the new initial one have to be imposed.
Based Visual Servoin§22], for which it is assumed that Hence, by denoting with;, t¢, p. 4 ;s Pe.a s Pe.d,is Ped,

the manipulator dynamics is taken into account directly by, ,;, and p., ; the initial and final planned time, po-
the low-level robot controller. sition, linear velocity and acceleration, respectivelythw



ap, = [as as a3 az a; ao]T and by taking into
account (2), (3) and (4), a linear quadratic system1®f
equations and unknowns is obtained. These initial condtio
correspond to the current robot motion state, while the final
ones depend on the current estimation.

The translation velocity input for the camera frame can
thus be generated as

Pe = R;F (pc,d + erp) ) (5)

where R, is the rotational matrix of the camera frame
with respect to the absolute world framk,, is a diagonal
constant;s % 3) gain matrix, andep is the (3 % 1) error vector Fig- 1. Absolute world frame (black), and the camera frathe- x.yczc.

at timet between the desired planned trajectory (2) and th@jn«s and the camera velocitf, is the 6 x 6) matrix which
current one provided by the robot direct kinematics. relates the velocity of the camera with respect to the camera
By denoting withL,;, and L, the € x 3) sub-matrices game 1o the velocity of the robot end-effector with respect
corresponding to the first and last three columns of (1), tl}% the base frameV ; denotes the projector matrix onto the
rotational components of the velocity input for the camerq space off, K, is a gain diagonal matrix, ang, is a set
. 1 T 1
frame are generated through the following control law: ¢ inint velocities exploited in the redundancy management
W =L, [K ey, (€5)Te,, (€5) - in ozderdt(: optiq:ji;e_stolme_t sub-(;aks.ks. Int.par.ticuI?;,.ti.s
.. o X employed to avoid joint limits and kinematic singularities
- L, (pi - P+ S(—pi)wi)} + @,

) ) IV. TRAJECTORY ESTIMATION
where the symbot denotes the pseudo-inverse of a matrix, . _ . o
p; is the estimation of the unknown distance between the bdh 'nitial baseline and linear initialization
and the object expressed ih, p¢ is evaluated in (5), while By using the measures provided by a single camera sys-
p¢ and@® are the estimations of both the unknown absolutéem, a classic static triangulation method cannot be enegloy
linear and angular velocities of the ball with respectta like for the stereo vision. Hence an estimation process that
Moreover,e, = —s is the image error vector that becomegnterpolates theD measurements along time is proposed.
zero when the camera is pointed towards the centroid of theln order to improve the robustness of the estimation
ball, 7., (e,) is a threshold function defined as follows process, the visual data collection has to be acquired rgovin
_ the camera along a significant baseline. Therefore, when the
o, (€5) = {0 if Jles]l < en ball is detected for the first time, the camera is moved with

(1 - Heeﬁ) es if |les| > ept, high velocity along a straight line in thgD Cartesian space,

Camera
frame

while its orientation is controlled to keep the ball in itsldie

and Kso(e;) is a @ x 2) gain matrix defined as follows o yiew, as explained in the previous section.

k,Io if Jles|| < ev By exploiting the motion performed by the camera during
5 (”es”q) ] - the initial baseline, a sequence of image measurements of
Ko(es) = { koe "\ en Iy if ey < &g < ens the ball trajectory can be acquired and collected.
koeﬁo(iﬁ—l)b i |les|| > evs By denoting with ¢, the k-th visual sample times,

the corresponding acquired image feature vector, the goint
=[x y z}T which belong to theoptical ray passing
rough the current absolute origin of the cameja =

T
fear eyr czk] and the k-th feature vectorr, =

whereeys > ey > e > 0, k, > 0 is a gain factor and

B, > 0 is a barrier factor that tunes the increasing rate ﬁ
K, in accordance to the image plane limits. In this way,
when the ball centroid approaches these limits, the @éip T ~ .
rapidly increases in order to avoid the lost of the ball view[”rv_k Ty, k rap] = cr + R.x3 (see Fig. 1), can be

It is worth noticing that in (6) onlyL,, needs to be defined with the following straight line equations

estimated, since it depends on the third component of the(r, » — ¢, 1)x + (Cok — T2 k)Y + T kCyk — Ty kCak = O
unknown p§, while L, depends on the available visual | (r, ;. — c, x)x + (cok — Tak)Z + TokCok — T2 kCak = 0,
measurements. The stability analysis of the system with (8)
control laws (5) and (6) is here omitted for brevity, but inca where R, ;. is the rotation matrix of the camera frame with
be asked to the authors, while the details about the unknowespect to the absolute world frame at tire Notice that

parameters estimation are presented in Section IV-D. bothc;, andR. ;, are provided by the robot direct kinematics.
Finally, the joints velocity input to the robot control unit By supposing negligible the effects of the air drag factor,
can be evaluated as follows [22] only for this linear initialization part, the points of théso-

) ) lute ball trajectory can be described as a parabolic funaifo
_ 7t c

q=JUQ)Tv; + N, K q,, (7) the timet with the equatiorp = p,+p,t+0.5gt?, whereg is
where g is the joint position vectorJJ(q) is the robot the gravity acceleration, ang, andp, are the initial absolute
Jacobian matrix, which provides the relationship betwéen t ball position and velocity (fot = 0, corresponding to the



time of the first ball detection), respectively. Withoutdasf time ¢, the considered cost function to minimize is
generality, the gravity acceleration is considered aligte "] e
x
s A’é — Sk
2k {yk]

the axisy of the world frame, withg = 9.81m/s?. min
The measured optical rays intersect the ball trajectory at P Yo =

each sample timg, (see Fig. 1). Hence, by replacingotrthe wheren is the current number of available ball observations

ball trajectory model into (8), the systery, [p{ pOT] = and p; is the estimated ball position with respect to the

by, of 2 equations in the 6 unknowng andp,, which fully  camera frame at time,

describe the ball trajectory, can be achieved, where

: 9)

~ N N a1 T N
ph=[2 0% 2] =Rl (bp—cx)-

Ay, = {TM Gk Cok T Tk 0 The absolute estimated ball positign.(p,, Py, tx) iS Ob-
Pzl = Cyk 0 Cake = Tk tained by numerically integrating, in the time inter@l¢,],
(ry ke — cy)te (Cok — Ta k) th 0 } with initial conditionsp, andp,, the following ballistic ball
" (rak — cy )tk 0 (Cak — Tak)tk motion with the air drag [2]:
_ [rykcor — rekcyr — 3(Cok — Tak)gtt 2
o= ke — el | P =g - “T (o) b0, (10)

By stacking into rows then; measurementsd, and yvherecw isa}coefﬁcien‘t depending on the thrgwn obje;_h;t,
by, a least-squares solution is considered for the systelhthe ball diameterp, is the density of the air aneh, is

A[pT pT" = b of n; equations and unknowns. the mass (_)f t_he pall. .
[po .pO] " quatl . " W : The minimization of the cost function (9), performed by
A weighted pseudo-inverse ol is employed in order . .
ging a well knownLevembert-Marquartalgorithm, means

to increase the relevance of the last measurements Wl€1 - o )
i . at the initial conditions about the ball trajectory arerid
respect to the first ones, since they are less affected by the

negligence of the air drag (the ball velocity is smaller) and’ such a way as to generate an estimated ball trajectory

are characterized by a higher image resolution (the bal l/:\;/hlch minimizes the distance between the predicted projec-

jon of the ball onto the image plane and the corresponding
closer to the camera). .
Th . b he k led t the ball trai measured ball observations.
e assumptions about the knowledge of the ball trajectory During the time in which the nonlinear estimation process

model and of the gravity vector implicitly solve the sca"ngcomputes the update values pf, and p,, and thus of
01

factor problem, due to the use of 2D V'S‘_J?"_data’ espemalhtle new interception point, new measures are acquired and
for the y component. Moreover, the acquisition of measur

ollected with the old ones. This new data set is employed
rEﬁjring the next non-linear refinement that adopts the pusvio

good conditioning of the least-squares problem. Howeter, t optimal solution as initial condition, resulting in an eféiot

;implifigd ball traj_ectory model, in which the air drag facto iterative optimization algorithm: with this arrangemetite

IS missing, Iack; in gccuracy [2]- ) _computational time of the non-linear optimization algionit
Once the estimation process produces its result, the fifgt gignificantly reduced and fully compatible with a real-

candidate for the interception point is evaluated. Namelyyme application. Then, once the update interception point

starting from the actual state (time, position, velocitydanis gyajlable, the parametets, are again tuned in order to

acceleration) of the camera motion along the baseline, the, e 5 trajectory (2) and (3) which starts from the current

parametersa, are evaluated in such a way as to reach,mera motion state and ends with the estimated position at
the new predicted position, whose computational detads af;,¢ update final interception time.

provided in the Section IV-C. The rotational part of the \yhen either the estimation refinement converges to a

camera, instead, is kept free to track the ball in order tynstant value or the current estimated catching time is
acquire more measurements. o _ approaching, the refinement process is stopped and the final
The trajectory estimation provided by this linear algamth catching trajectory is planned to accommodate the ball mo-

is employed as a starting point for a non-linear estimatiofion into the robotic hand, as explained in the next subsecti
algorithm, that continuously refines the current estinratis-

ing new available ball observations and a more accurate b&lt Interception pose selection
trajectory model, as described in the following subsection The current catching poinp,, along the estimated ball
trajectory, which is reachable with the minimum effort of
B. Nonlinear estimation refinement the robot joint torques, is evaluated. In details, the datgh
time ¢, and the ball velocityp, at the positionp, can
During the time required by the previous linear estimatiome computed from the current predicted trajectory and the
process, a new set of visual measurements are acquir&thematic and dynamic robot models. Hence, starting from
Then, both the new measures and the old ones are employhd actual motion state (position, velocity, accelergtioh
in a nonlinear estimation process whose starting condition the robotic hand, the parametass can be tuned so as to
the result obtained with the previous linear method. lead the hand to the point, at time ¢, with the same
By denoting withs;, the ball centroid acquired at a certainvelocity of the ball (or scaled if that is too high).
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Fig. 3. Overlay of the ball trajectory and robot motion.

Fig. 2. Architecture of the ball catching system.

camera has been mounted, behind a transparent plexiglass,
grectly in the center of the palm of the hand. A high-prigrit
faulti-thread programming together with the synchronizati

When the refinement process stops, ¢taeching pathcan
be generated: the hand orientation is controlled in order
have a direction of the camera equal to the tangent to the _
estimated ball trajectory at the predicted catching ppipt §|gnal provided ,t_’y the camera h_ave _been employed to
Once this point has been reached at the estimated catchlﬁqorove the stability of the elaboration time. _
time, the hand starts to close its fingers and is moved !N order to increase the acquisition frame-rate, which
following the same predicted path of the ball, while itsaffects the overall performances of the algorithm, an image
velocity will be decreased in a fixed time (or displacement§iz€ of 875 x 500) pixels and a dynamic Rol windowing
until zero, in order to allow the dissipation of the impactVith @ dimension of {50 x 150) pixels have been employed,

energy in a sufficient time interval. yielding a visual sampling frequency of abolg0 fps. A
ball with a radius of3.5 cm and a weight of abo6 g has
D. Estimated parameters been considered. The coefficients of the air drag factor have

In order to compute the estimated quantities in (6), starReen chosen as follows;, = 0.45 and p, = 1.293 kg/nv’.
ing form the current estimated initial ball positign, and The control gains of the vision-based ball tracking control
velocity p,, the ballistic motion model of the ball (10) is have been tuned th, = 7, with with e;; = 10 pixels, e;2 =
numerically integrated in the time intervé,t;] so as to 100 pixels andeys = 300 pixels. The control gains, instead,
obtainp® at a certain time;, while the termz¢ required for for the positional part have been tunedd, = 50Is. The
the evaluation off,, is the third component of such vector.redundancy management in (7) has been employed in order
In order to Comp|ete the terms required in (6), the twdo avoid joint Iimits, kinematic singularities and to reduc
(3x1) vectorsi)g and&¢ should be computed. The former the sliding track motions, being this last the slowest one.
can be again retrieved by the previous numerical integratio A baseline of30 cm is performed by the camera3f0 ms.
while the latter can be obtained a§ = (p© x p¢)/||pS[|>. Hence, for a fixed camera frame rate, the first trajectory
Since before of;; measurements it is not possible to haveestimation starts when a number of abaut= 40 samples
any estimation ofp, and p,, an initial rough estimation have been collected. In the employed set-up latency periods
should be provided in order to compute the above quantitieand delays between the robot control PC, the CAG control
For such a reason, a statistical calibration has been prelinunit and the visual elaboration PC are present. An estimatio
nary realized, and the results have in turn been employed &f these parameters has been performed so as to synchronize
the experiments presented in the next section. the direct kinematic measurements with the visual data.
Several experiments have been carried out with different
light conditions and pitchers. The percentage of ball cepr
Figure 2 shows the experimental set-up implementingion evaluated over a set 60 shots is abou®0%, while the
the proposed control algorithm. A Comau Smart-Six robgbercentage of catching is abdli%. This difference is due
manipulator mounted on a sliding track and equipped with @ the poor performance of the available hand, which has
4-fingered hand composed of 16 Bioloid Dynamixel AX- very slow dynamics. This last is partially compensated by
servomotors has been employed. The Comau C4G contsihrting in advance the hand closing on the basis of the esti-
unit is in charge of the compensation of the robot dynamimated catching time, but obviously some limitations remain
model, while an external PC with Ubuntu OS patched wittDther sources of inaccuracy are related to the noisy visual
the RTAI-real time kernel generates the position/orieatat measurements due to the quick change of the illumination
references a ms. The control PC communicates with aconditions along the shot path, especially when the ball is
second Windows OS PC that is responsible of the visualose to a light source on the ceiling. In Fig. 3 it is possible
elaboration. An industrial USB iDS UEYE UI-1220SE-Cto observe the complete ball trajectory for a given throw,

V. EXPERIMENTS
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Fig. 4. Sequence of the interception points (cross) pregeiito the £ —y)
and ¢ — y) planes. The dashed lines are the planned path, startimg fro
the current hand position (circle). The continuous lines #e real path
followed by the hand, starting with the initial baselineggn) and leading
to the final catching path (black).

El

[10]

with the overlay of the robot motion.

In Fig. 4, with respect to the throw represented in Fig. 311]
all the estimated positions, projected in the-{ y)- plane
of the world frame, are represented with a cross point. The,
color bar identifies the ordered sequence of all the prediicte
interception points, while the biggest brown cross reprisse
the final position in which the estimation has been conshﬂer(?l?,]
stable. The dashed lines represent the planned path for the
hand, which is achieved using (2) starting from the current
motion state and leading to the current estimated inteimept
position, while the continuous line is the real path follawve
by the hand, which starts with the baseline (green piece &f]
the path) and ends with the final catching trajectory (black
piece of the path): the big black dot represents the final
configuration of the hand in which this last is still and the
ball has been caught (see Section IV-C). [

It is worth noticing that the first estimated point, the green
one, is given by the linear estimation process. Furthecesin [18]
the palm of the adopted hand is a square with a side-length
of about10 cm, the estimation would have been consideref9]
as stable when the refinements become less than the half
of such dimension. However, in the proposed experimental
results a conservative thresholdlofm has been considered.[20]

VI. CONCLUSION

[21]
A solution for the eye-in-hand robotic ball catching prob-

lem has been presented. A partitioned visual approach has
been employed in order to move the robot and keep the ball

in the camera view. The ball trajectory has been estimatgzb]
through an iterative nonlinear optimization algorithm,igéh

has been initialized by a fast linear estimation method. Tt%g’]
approach has been demonstrated with experimental results.
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