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Abstract— In this paper, a 3D robotic ball catching algorithm
which employs only an eye-in-hand monocular visual-systemis
presented. A partitioned visual servoing control is used inorder
to generate the robot motion, keeping always the ball in the field
of view of the camera. When the ball is detected, the camera
mounted on the robot end-effector is commanded to follow a
suitable baseline in order to acquire measurements and provide
a first possible interception point through a linear estimation
process. Thereafter, further visual measures are acquiredin
order to continuously refine the previous prediction through a
non-linear estimation process. Experimental results showthe
effectiveness of the proposed solution.

I. I NTRODUCTION

Smart sensing, object tracking, motion prediction, on-line
trajectory planning and motion coordination are capabilities
required in a robotic system to catch a thrown ball.

One of the first approaches where robot manipulators
are used in catching moving objects can be found in [1],
while in [2] a stereo vision system with a large baseline, an
extended Kalman filter (EKF) and a ball trajectory predictor
are exploited so as to build a robotic ball catcher. The same
system equipped with a dexterous multi-fingered hand is
tested in [3], while recently a new version of this work is
proposed in [4] involving a mobile humanoid and a circular
gradient method to detect the ball in the images.

In [5], [6] a high-speed multi-fingered hand and a high-
speed stereo vision system are employed to catch a falling
ball and a falling cylinder. A robotic arm whose aim is
to catch a ball before it fell from a table is considered
in [7], where uncalibrated cameras are employed to track
the moving ball. In [8] the control is applied to achieve si-
multaneously all the2D tasks defined for all the images: if all
the respective goals defined in the images are accomplished
at the same time, then the3D task can be interpreted as
successful. A DSP is employed as a computational platform
in the catcher robot system developed in [9], while in [10]
an iterative prediction algorithm determines the final time
and position of a humanoid motion, whose primitives derive
from studies on human movements.

Other examples of robotic ball catching can be found
in [11], where the ball path is predicted with the help of
a proper neural network. The ball catching task is also
considered as a case study in several virtual-reality appli-
cations [12], [13], [14].
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Several papers make use of Chapman’s strategy – the
fielder should run at a proper speed to maintain a constant
increasing rate of the tangent to the ball’s elevation angle[15]
– to catch a ball. In [16] reinforcement learning models
are used, while an autonomous mobile robot is considered
in [17] for a ball catching task using a visual feedback control
method based on aLinear Optimal Trajectorystrategy.
In [18] it is introduced an alternative strategy still basedon
Chapman’s hypothesis, calledGaining Angle of Gaze, which
requires only the information about the elevation angle of
gaze captured as a2D information. Finally, in [19] a motion-
analysing technique over a finite time is used inside a closed-
loop system in order to catch a thrown ball.

Most of the presented approaches use either a stereo visual
system to solve the3D catching problem or a single camera
for the 2D case. This scenario is reasonable because3D
tracking of the ball takes benefits from triangulation methods
while, in the case of a single camera, only2D information
is directly available. However, a high frame rate and optics
with a good accuracy are required to achieve an accurate and
fast trajectory prediction, i.e. a successful catch. By using
only one camera, the cost of the equipment can be reduced.
Moreover, the calibration procedure for one camera is easier
than in the stereo case. In [20] the estimation of the3D state
of a thrown object by using a least-squares solution starting
from a sequence of images given by a single camera is
presented. Further, in [21] a combination of image-based and
position-based visual servoing with an eye-to-hand camera
configuration is employed in order to catch a ball whose
trajectory is estimated through a RLS algorithm.

In this paper, a monocular robotic3D ball catching is
proposed. A robot manipulator with a standard CCD camera
mounted in an eye-in-hand configuration is driven by visual
information in order to track a thrown ball. When the ball
is detected for the first time, the camera is commanded
to follow a suitable baseline in the3D space in order to
increase the estimation robustness. The ball is always kept
in the camera field of view through a partitioned visual
servoing control. During this starting motion,2D information
is collected and elaborated in order to get a first prediction
of the ball trajectory through a rough linear estimation: such
prediction is employed as a starting point for a more precise
trajectory refinement through a nonlinear estimator. Hence,
the visual measurements are continuously elaborated in order
to update the estimation of the ball trajectory on-line, and
thus the prediction of the interception pose. Finally, whenever
the continuous refinement does not improve significantly the
prediction of the trajectory, the final catching pose can be



computed by taking into account the ball and the robot
dynamics, in such a way as to accommodate the ball into the
robotic hand. Experimental results using a common industrial
robot demonstrate the effectiveness of the proposed solution.

II. I MAGE PROCESSING

The images provided by a calibrated camera mounted in
an eye-in-hand configuration is continuously elaborated in
order to identify and extract the position of the ball, i.e. the
centroid, in the normalized image plane. The whole image
is elaborated until the ball is detected, then a dynamic win-
dowing technique, which is based on a first order prediction
algorithm of the ball motion in the image plane, is employed
after the first detection, so as to reduce the computational
requirement of the image elaboration process. Moreover, by
adopting the Region of Interest (RoI) camera acquisition
modality, which is available on most of the current USB
cameras, the camera frame rate can be significantly speeded
up (e.g. easily more than100 Hz).

An equalized color-based clustering is adopted in the
image processing, and it makes use of theHue, Lightness,
and Saturation Color Spaceso as to limit as much as possible
the problems related to the variations of the environmental
lightness along the ball path. In details, a binarization process
is performed through an equalized test, which is based on a
histogram of the H-channel and centred around the known
ball color, together with a min/max S-channel threshold.
After some post-elaboration process employed to reduce the
image noise, all the blobs present in the binarized image are
collected and filtered so as to eliminate the background and
all the blobs with a very small area. If more than one blob
overcomes this filtering process, a neighbourhood selection
criteria with respect to the predicted ball position is adopted.
Finally, the centroid of the selected blob is evaluated as a
good approximation of the ball center.

This algorithm can also be executed to find other relevant
objects in the environment. For example, a color tuned on
the hand of the pitcher is also employed, which allows
recognizing up to a fully hand occlusion whether the ball
is held in the hand or it has been thrown, avoiding in such
a way unnecessary initial movements of the robot.

III. O N-LINE MOTION PLANNING AND CONTROL LAW

Without loss of generality, the camera frame is here con-
sidered coincident with the hand (end-effector) frame, with
the camera optical axis aligned with the hand approaching
axis. Obviously, being the camera fixed with respect to the
hand in the considered eye-in-hand camera configuration,
a fixed transformation should be considered in the cases
where these reference frames are not coincident. Hence,
in the remainder of the paper, only the camera frame will
be considered. Moreover, the proposed visual control law
belongs to the category namedResolved-Velocity Image-
Based Visual Servoing[22], for which it is assumed that
the manipulator dynamics is taken into account directly by
the low-level robot controller.

A necessary but non sufficient condition to accomplish a
visual ball catching task is to keep the ball in the field of view
of the camera; since with small movements of the camera
orientation (i.e. with small movements of the robot joints)
large parts of the scene can be observed, in the proposed
method the partitioned approach presented in [23] has been
employed. The rotational components of the robot motion
will be reserved to the ball tracking task, while the positional
components of the camera motion have to be generated in a
way as to intercept the ball trajectory.

By adopting a calibrated camera, the normalized image
coordinates of the ball centroids =

[

X Y
]T

, corre-
sponding to a ball positionpc

o with respect to the camera
frameΣc = Oc − xcyczc, are considered

pc
o =

[

xc yc zc
]T

= zc
[

X Y 1
]T

= zcs̃,

where s̃ =
[

sT 1
]T

. The absolute velocity of the camera

vc
c =

[

ṗcT
c ωcT

c

]T

, the absolute velocity of the thrown

object vc
o =

[

ṗcT
o ωcT

o

]T

, both expressed with respect to
Σc, and the velocity of the image featurės in the image
plane are related by the following linear equation [22]

ṡ = Lsv
c
c +LsΓ(−pc

o)v
c
o,

whereLs is (2 × 6) interaction matrix for a point image
feature defined as follows [22]

Ls =

[

−1/zc 0 X/zc XY −1−X2 Y
0 −1/zc Y/zc 1 + Y 2 −XY −X

]

,

(1)
while Γ(·) is the following (6× 6) matrix

Γ(·) =

[

−I3 S(·)
0 −I3

]

,

in which In denotes the (n×n) identity matrix andS(·) the
skew-symmetric matrix.

In the proposed approach, the translational componentṗc
c

is reserved to move the hand in order to intercept the ball.
A fifth-order polynomial vector is thus considered so as to
compute the desired trajectory for the camera on-line, i.e.for
the hand, in the3D Cartesian space

pc,d(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0, (2)

wherepc,d is the (3 × 1) desired absolute position of the
camera, andah with h = 0, . . . , 5 are (3 × 1) coefficient
vectors. Hence, the translational components of the desired
camera velocity and acceleration are namely equal to

ṗc,d = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t+ a1, (3)

p̈c,d = 20a5t
3 + 12a4t

2 + 6a3t+ 2a2. (4)

In order to update the parametersah on-line, ensuring
a smooth re-planned trajectory when a new interception
point is available, the continuity between the current mo-
tion state and the new initial one have to be imposed.
Hence, by denoting withti, tf , pc,d,i, pc,d,f , ṗc,d,i, ṗc,d,f ,
p̈c,d,i and p̈c,d,f the initial and final planned time, po-
sition, linear velocity and acceleration, respectively, with



āh =
[

a5 a4 a3 a2 a1 a0

]T
and by taking into

account (2), (3) and (4), a linear quadratic system of18
equations and unknowns is obtained. These initial conditions
correspond to the current robot motion state, while the final
ones depend on the current estimation.

The translation velocity input for the camera frame can
thus be generated as

ṗc
c = RT

c

(

ṗc,d +Kpep
)

, (5)

where Rc is the rotational matrix of the camera frame
with respect to the absolute world frame,Kp is a diagonal
constant (3×3) gain matrix, andep is the (3×1) error vector
at time t between the desired planned trajectory (2) and the
current one provided by the robot direct kinematics.

By denoting withLsp andLso the (2 × 3) sub-matrices
corresponding to the first and last three columns of (1), the
rotational components of the velocity input for the camera
frame are generated through the following control law:

ωc
c = L†

so [Kso,eb2 (es)τττ eb1 (es)

− L̂sp

(

ṗc
c − ˆ̇pc

o + S(−p̂
c
o)ω̂

c
o

)]

+ ω̂
c
o,

(6)

where the symbol† denotes the pseudo-inverse of a matrix,
p̂
c
o is the estimation of the unknown distance between the ball

and the object expressed inΣc, ṗ
c
c is evaluated in (5), while

ˆ̇pc
o andω̂c

o are the estimations of both the unknown absolute
linear and angular velocities of the ball with respect toΣc.
Moreover,es = −s is the image error vector that becomes
zero when the camera is pointed towards the centroid of the
ball, τττ eb(es) is a threshold function defined as follows

τ eb1(es) =

{

0 if ‖es‖ ≤ eb1
(

1− eb1
‖es‖

)

es if ‖es‖ > eb1,

andKso(es) is a (2× 2) gain matrix defined as follows

Kso(es) =















koI2 if ‖es‖ ≤ eb2

koe
βo

(

‖es‖
e
b2

−1

)

I2 if eb2 < ‖es‖ ≤ eb3

koe
βo

(

e
b3

e
b2

−1

)

I2 if ‖es‖ > eb3

whereeb3 > eb2 > eb1 > 0, ko > 0 is a gain factor and
βo > 0 is a barrier factor that tunes the increasing rate of
Kso in accordance to the image plane limits. In this way,
when the ball centroid approaches these limits, the gainKso

rapidly increases in order to avoid the lost of the ball view.
It is worth noticing that in (6) onlyLsp needs to be

estimated, since it depends on the third component of the
unknown pc

o, while Lso depends on the available visual
measurements. The stability analysis of the system with
control laws (5) and (6) is here omitted for brevity, but it can
be asked to the authors, while the details about the unknown
parameters estimation are presented in Section IV-D.

Finally, the joints velocity input to the robot control unit
can be evaluated as follows [22]

q̇ = J†(q)T cv
c
c +NJKrq̇r, (7)

where q is the joint position vector,J(q) is the robot
Jacobian matrix, which provides the relationship between the
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Fig. 1. Absolute world frame (black), and the camera frameOc−xcyczc.

joints and the camera velocity,T c is the (6×6) matrix which
relates the velocity of the camera with respect to the camera
frame to the velocity of the robot end-effector with respect
to the base frame,NJ denotes the projector matrix onto the
null space ofJ , Kr is a gain diagonal matrix, anḋqr is a set
of joint velocities exploited in the redundancy management
in order to optimize some sub-tasks. In particular,q̇r is
employed to avoid joint limits and kinematic singularities.

IV. T RAJECTORY ESTIMATION

A. Initial baseline and linear initialization

By using the measures provided by a single camera sys-
tem, a classic static triangulation method cannot be employed
like for the stereo vision. Hence an estimation process that
interpolates the2D measurements along time is proposed.

In order to improve the robustness of the estimation
process, the visual data collection has to be acquired moving
the camera along a significant baseline. Therefore, when the
ball is detected for the first time, the camera is moved with
high velocity along a straight line in the3D Cartesian space,
while its orientation is controlled to keep the ball in its field
of view, as explained in the previous section.

By exploiting the motion performed by the camera during
the initial baseline, a sequence of image measurements of
the ball trajectory can be acquired and collected.

By denoting with tk the k-th visual sample time,̃sk
the corresponding acquired image feature vector, the points
p =

[

x y z
]T

which belong to theoptical ray passing
through the current absolute origin of the camerack =
[

cx,k cy,k cz,k
]T

and the k-th feature vectorrk =
[

rx,k ry,k rz,k
]T

= ck + Rc,ks̃ (see Fig. 1), can be
defined with the following straight line equations
{

(ry,k − cy,k)x+ (cx,k − rx,k)y + rx,kcy,k − ry,kcx,k = 0
(rz,k − cz,k)x + (cx,k − rx,k)z + rx,kcz,k − rz,kcx,k = 0,

(8)
whereRc,k is the rotation matrix of the camera frame with
respect to the absolute world frame at timetk. Notice that
bothck andRc,k are provided by the robot direct kinematics.

By supposing negligible the effects of the air drag factor,
only for this linear initialization part, the points of the abso-
lute ball trajectory can be described as a parabolic function of
the timet with the equationp = p

0
+ṗ

0
t+0.5gt2, whereg is

the gravity acceleration, andp0 andṗ0 are the initial absolute
ball position and velocity (fort = 0, corresponding to the



time of the first ball detection), respectively. Without loss of
generality, the gravity acceleration is considered aligned to
the axisy of the world frame, withg = 9.81m/s2.

The measured optical rays intersect the ball trajectory at
each sample timetk(see Fig. 1). Hence, by replacingp of the
ball trajectory model into (8), the systemAk

[

pT

0
ṗT

0

]T

=
bk, of 2 equations in the 6 unknownsp0 andṗ0, which fully
describe the ball trajectory, can be achieved, where

Ak =

[

ry,k − cy,k cx,k − rx,k 0
rz,k − cy,k 0 cx,k − rx,k

. . .

. . .
(ry,k − cy,k)tk (cx,k − rx,k)tk 0
(rz,k − cy,k)tk 0 (cx,k − rx,k)tk

]

bk =

[

ry,kcx,k − rx,kcy,k −
1

2
(cx,k − rx,k)gt

2

k

rz,kcx,k − rx,kcz,k

]

.

By stacking into rows thenl measurementsAk and
bk, a least-squares solution is considered for the system
A

[

pT
0

ṗT

0

]T

= b of nl equations and6 unknowns.
A weighted pseudo-inverse ofA is employed in order

to increase the relevance of the last measurements with
respect to the first ones, since they are less affected by the
negligence of the air drag (the ball velocity is smaller) and
are characterized by a higher image resolution (the ball is
closer to the camera).

The assumptions about the knowledge of the ball trajectory
model and of the gravity vector implicitly solve the scaling
factor problem, due to the use of 2D visual data, especially
for the y component. Moreover, the acquisition of measure-
ments from several camera positions also contribute to the
good conditioning of the least-squares problem. However, the
simplified ball trajectory model, in which the air drag factor
is missing, lacks in accuracy [2].

Once the estimation process produces its result, the first
candidate for the interception point is evaluated. Namely,
starting from the actual state (time, position, velocity and
acceleration) of the camera motion along the baseline, the
parametersah are evaluated in such a way as to reach
the new predicted position, whose computational details are
provided in the Section IV-C. The rotational part of the
camera, instead, is kept free to track the ball in order to
acquire more measurements.

The trajectory estimation provided by this linear algorithm
is employed as a starting point for a non-linear estimation
algorithm, that continuously refines the current estimation us-
ing new available ball observations and a more accurate ball
trajectory model, as described in the following subsection.

B. Nonlinear estimation refinement

During the time required by the previous linear estimation
process, a new set of visual measurements are acquired.
Then, both the new measures and the old ones are employed
in a nonlinear estimation process whose starting conditionis
the result obtained with the previous linear method.

By denoting withsk the ball centroid acquired at a certain

time tk, the considered cost function to minimize is

min
p

0
,v0

n
∑

k=1

∥

∥

∥

∥

1

ẑck

[

x̂c
k

ŷck

]

− sk

∥

∥

∥

∥

, (9)

wheren is the current number of available ball observations
and p̂

c
k is the estimated ball position with respect to the

camera frame at timetk

p̂
c
k =

[

x̂c
k ŷck ẑck

]T
= RT

c,k (p̂k − ck) .

The absolute estimated ball position̂pk(p0
, ṗ

0
, tk) is ob-

tained by numerically integrating, in the time interval[0, tk],
with initial conditionsp0 andṗ0, the following ballistic ball
motion with the air drag [2]:

p̈(t) = g −
cwπd

2

bρa
2mb

‖ṗ(t)‖ ṗ(t), (10)

wherecw is a coefficient depending on the thrown object,db
is the ball diameter,ρa is the density of the air andmb is
the mass of the ball.

The minimization of the cost function (9), performed by
using a well knownLevembert-Marquartalgorithm, means
that the initial conditions about the ball trajectory are found
in such a way as to generate an estimated ball trajectory
which minimizes the distance between the predicted projec-
tion of the ball onto the image plane and the corresponding
measured ball observations.

During the time in which the nonlinear estimation process
computes the update values ofp0 and ṗ0, and thus of
the new interception point, new measures are acquired and
collected with the old ones. This new data set is employed
during the next non-linear refinement that adopts the previous
optimal solution as initial condition, resulting in an efficient
iterative optimization algorithm: with this arrangement,the
computational time of the non-linear optimization algorithm
is significantly reduced and fully compatible with a real-
time application. Then, once the update interception point
is available, the parametersah are again tuned in order to
have a trajectory (2) and (3) which starts from the current
camera motion state and ends with the estimated position at
the update final interception time.

When either the estimation refinement converges to a
constant value or the current estimated catching time is
approaching, the refinement process is stopped and the final
catching trajectory is planned to accommodate the ball mo-
tion into the robotic hand, as explained in the next subsection.

C. Interception pose selection

The current catching pointp× along the estimated ball
trajectory, which is reachable with the minimum effort of
the robot joint torques, is evaluated. In details, the catching
time t× and the ball velocityṗ× at the positionp× can
be computed from the current predicted trajectory and the
kinematic and dynamic robot models. Hence, starting from
the actual motion state (position, velocity, acceleration) of
the robotic hand, the parametersah can be tuned so as to
lead the hand to the pointp× at time t× with the same
velocity of the ball (or scaled if that is too high).
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Fig. 2. Architecture of the ball catching system.

When the refinement process stops, thecatching pathcan
be generated: the hand orientation is controlled in order to
have a direction of the camera equal to the tangent to the
estimated ball trajectory at the predicted catching pointp×.
Once this point has been reached at the estimated catching
time, the hand starts to close its fingers and is moved
following the same predicted path of the ball, while its
velocity will be decreased in a fixed time (or displacement)
until zero, in order to allow the dissipation of the impact
energy in a sufficient time interval.

D. Estimated parameters

In order to compute the estimated quantities in (6), start-
ing form the current estimated initial ball positionp

0
and

velocity ṗ0, the ballistic motion model of the ball (10) is
numerically integrated in the time interval[0, ti] so as to
obtainp̂c

o at a certain timeti, while the termẑc required for
the evaluation of̂Lsp is the third component of such vector.

In order to complete the terms required in (6), the two
(3× 1) vectorsˆ̇pc

o and ω̂c
o should be computed. The former

can be again retrieved by the previous numerical integration,
while the latter can be obtained aŝωc

o = (p̂c
o × ˆ̇pc

o)/‖p̂
c
o‖

2.
Since before ofnl measurements it is not possible to have

any estimation ofp
0

and ṗ
0
, an initial rough estimation

should be provided in order to compute the above quantities.
For such a reason, a statistical calibration has been prelimi-
nary realized, and the results have in turn been employed in
the experiments presented in the next section.

V. EXPERIMENTS

Figure 2 shows the experimental set-up implementing
the proposed control algorithm. A Comau Smart-Six robot
manipulator mounted on a sliding track and equipped with a
4-fingered hand composed of 16 Bioloid Dynamixel AX-12
servomotors has been employed. The Comau C4G control
unit is in charge of the compensation of the robot dynamic
model, while an external PC with Ubuntu OS patched with
the RTAI-real time kernel generates the position/orientation
references at2 ms. The control PC communicates with a
second Windows OS PC that is responsible of the visual
elaboration. An industrial USB iDS UEYE UI-1220SE-C

Fig. 3. Overlay of the ball trajectory and robot motion.

camera has been mounted, behind a transparent plexiglass,
directly in the center of the palm of the hand. A high-priority
multi-thread programming together with the synchronization
signal provided by the camera have been employed to
improve the stability of the elaboration time.

In order to increase the acquisition frame-rate, which
affects the overall performances of the algorithm, an image
size of (375 × 500) pixels and a dynamic RoI windowing
with a dimension of (150×150) pixels have been employed,
yielding a visual sampling frequency of about130 fps. A
ball with a radius of3.5 cm and a weight of about26 g has
been considered. The coefficients of the air drag factor have
been chosen as follows:cw = 0.45 andρa = 1.293 kg/m3.

The control gains of the vision-based ball tracking control
have been tuned toko = 7, with with eb1 = 10 pixels,eb2 =
100 pixels andeb3 = 300 pixels. The control gains, instead,
for the positional part have been tuned toKp = 50I3. The
redundancy management in (7) has been employed in order
to avoid joint limits, kinematic singularities and to reduce
the sliding track motions, being this last the slowest one.

A baseline of30 cm is performed by the camera in350 ms.
Hence, for a fixed camera frame rate, the first trajectory
estimation starts when a number of aboutnl = 40 samples
have been collected. In the employed set-up latency periods
and delays between the robot control PC, the C4G control
unit and the visual elaboration PC are present. An estimation
of these parameters has been performed so as to synchronize
the direct kinematic measurements with the visual data.

Several experiments have been carried out with different
light conditions and pitchers. The percentage of ball intercep-
tion evaluated over a set of50 shots is about90%, while the
percentage of catching is about70%. This difference is due
to the poor performance of the available hand, which has
very slow dynamics. This last is partially compensated by
starting in advance the hand closing on the basis of the esti-
mated catching time, but obviously some limitations remain.
Other sources of inaccuracy are related to the noisy visual
measurements due to the quick change of the illumination
conditions along the shot path, especially when the ball is
close to a light source on the ceiling. In Fig. 3 it is possible
to observe the complete ball trajectory for a given throw,
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Fig. 4. Sequence of the interception points (cross) projected into the (x−y)
and (z − y) planes. The dashed lines are the planned path, starting from
the current hand position (circle). The continuous lines are the real path
followed by the hand, starting with the initial baseline (green) and leading
to the final catching path (black).

with the overlay of the robot motion.
In Fig. 4, with respect to the throw represented in Fig. 3,

all the estimated positions, projected in the (x − y)- plane
of the world frame, are represented with a cross point. The
color bar identifies the ordered sequence of all the predicted
interception points, while the biggest brown cross represents
the final position in which the estimation has been considered
stable. The dashed lines represent the planned path for the
hand, which is achieved using (2) starting from the current
motion state and leading to the current estimated interception
position, while the continuous line is the real path followed
by the hand, which starts with the baseline (green piece of
the path) and ends with the final catching trajectory (black
piece of the path): the big black dot represents the final
configuration of the hand in which this last is still and the
ball has been caught (see Section IV-C).

It is worth noticing that the first estimated point, the green
one, is given by the linear estimation process. Further, since
the palm of the adopted hand is a square with a side-length
of about10 cm, the estimation would have been considered
as stable when the refinements become less than the half
of such dimension. However, in the proposed experimental
results a conservative threshold of1 cm has been considered.

VI. CONCLUSION

A solution for the eye-in-hand robotic ball catching prob-
lem has been presented. A partitioned visual approach has
been employed in order to move the robot and keep the ball
in the camera view. The ball trajectory has been estimated
through an iterative nonlinear optimization algorithm, which
has been initialized by a fast linear estimation method. The
approach has been demonstrated with experimental results.
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