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Aerial Manipulation: A Literature Review
Fabio Ruggiero, Vincenzo Lippiello, Anibal Ollero

Abstract—Aerial manipulation aims at combining the versatil-
ity and the agility of some aerial platforms with the manipulation
capabilities of robotic arms. This letter tries to collect the results
reached by the research community so far within the field of
aerial manipulation, especially from the technological and control
point of view. A brief literature review of general aerial robotics
and space manipulation is carried out as well.

I. INTRODUCTION

THE INTEREST towards unmanned aerial vehicles
(UAVs) is daily growing during the last decade, not only

within research communities but also within industrial compa-
nies and among public opinion. One may think about the idea
that one of the most prominent electronic commerce websites
around the world is planning to deliver packages to customers’
hands in thirty minutes or less using hexacopters [1]. In 2016,
White House has allocated $35 million in research fund-
ing by the National Science Foundation (NSF) to accelerate
the development of design and control of UAVs, especially
for civilian uses like monitoring and inspection of physical
infrastructures, smart response to disasters, agricultural and
meteorological domains [2]. Therefore, applications in which
UAVs are employed are continually increasing. As a matter
of fact, UAVs are operated to study seismic hazards and areas
hit by earthquakes [3]; UAVs are also used by archaeologists
to digitally reconstruct the medieval part of Cerreto Sannita,
a small town in southern Italy [4]; some companies started to
think about a sort of personal UAV equipped with a camera to
record self-movies [5], particularly indicated for sportsman.

All the above data and examples lead to the result that
aerial robotics is indeed in its golden period. Nevertheless,
UAVs have to migrate from passive tasks like inspection,
surveillance, monitoring, remote sensing and so on, into ac-
tive tasks like grasping and manipulation. This perfectly fits
what established by the European Robotics Strategic Research
Agenda (eSRA), presented in Brussels in 2009 and updated in
2014 [6]. According to the eSRA, aerial and space robots are
intended to be employed as robotic workers and co-workers,
logistic robots, and robots for exploration and inspection. This
means that UAVs have to be endowed with manipulation skills
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Fig. 1. Application scenarios in which aerial manipulation might be helpful.
Left column: bridge inspection; central column: high-voltage electric lines
inspection and fixing up; right column: rotor blade repairing.

to perform the desired tasks. Hence, from a general point of
view, for aerial manipulation it is intended the grasping, trans-
porting, positioning, assembly and disassembly of mechanical
parts, measurements instruments and any objects, performed
with UAVs. The introduction of aerial manipulation in the
scenarios described by the eSRA can be helpful especially
in those industrial and service applications that are considered
very dangerous for a human operator. For instance, the tasks
illustrated in Figure 1 are not only very unsafe, but they are
also costly since the performance of professional climbers and
specialists might be required. An aerial vehicle able to carry
out simple manipulation jobs could indeed assist the human in
these activities, or at least in the most hazardous and critical
situations.

UAVs should be equipped first of all of the proper tools
to accomplish manipulation tasks in the air. The two most
adopted solutions are either to mount a gripper or a multi-
fingered hand directly on the aerial vehicle, e.g., a flying
hand (FH) or to equip the UAV with one or more robotic
arms, e.g., an unmanned aerial manipulator (UAM). In the
former case, the object can be grasped and locally manipulated
during the flight. However, the single gripper is not enough to
obtain a complete evolution from passive to active tasks of the
UAVs: mechanical structures mounted on the UAVs are then
essential to perform more complex actions. Mobile ground
platforms [9], underwater [10], and space robots [11] can be
taken as examples of this scenario. Therefore, a UAM could
be an efficient solution providing an aerial vehicle with the
capability of performing dexterous manipulation tasks.

To the best of the authors’ knowledge, the present letter
is the first survey about the aerial manipulation topic. Several
surveys and textbooks have already been published for the sole
UAVs. A brief literature review about the UAVs is any way
carried out in the next section because the UAV is the main
component of both an FH and a UAM. The solutions employed
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Fig. 2. Examples among the five categories of UAVs described in the text. From left to right: a rotary wings UAV, in particular a hexacopter from YUNEEC [7];
a convertible UAV, in particular a quadrotor with tilting rotors from TILT Racing Drone [8]; a bio-inspired UAV, in particular a robotic flying insect; a fixed-wing
UAV, in particular an electric glider; a lighter-than-air UAV, in particular a blimp.

so far to deal with the problems arisen by using these last
devices will be instead listed in Section III and Section IV,
respectively. A small review about manipulation activities in
the space is reported within Section V before the concluding
discussion.

II. BRIEF LITERATURE REVIEW ABOUT CONTROL OF UAVS

Due to the considerable bulk of applications for aerial
vehicles, it is quite difficult to perform an accurate taxonomy
of UAVs since there exist many devices in the market with
different dimensions, mechanical configuration, actuators and
so on. Following what presented in [12], classifying the UAVs
from their high manoeuvrability and low endurance toward
their low manoeuvrability and high endurance yields: i) rotary
wings UAVs (RW-UAVs), like multirotors (e.g., quadcopters,
hexacopters), small-scale helicopter-based UAVs (HUAVs),
coaxial helicopters and ducted fan UAVs; ii) convertibles
UAVs, characterized by interchangeable designs, like tilting
rotors or cruise-flight-enable ducted fans UAVs, tail sitters
UAVs and so on; iii) bio-inspired UAVs, taking inspiration
from the flight of the insects and are mainly concerning
flapping wing devices; iv) fixed-wing UAVs, like acrobatic
flyers, Delta-wings and electric gliders; v) lighter-than-air
UAVs (LtA-UAVs) like autonomous blimps. An example for
each of the five categories mentioned above is drawn in
Fig. 2. Among the above-listed devices, the vertical take-off
and landing (VToL) UAVs do not need a runway to both
detach and land from/to the ground. Compared to standard
aircrafts, multirotors UAVs are low-cost devices and easily
maneuverable. They can perform hovering in a precise way,
but the endurance is not their best peculiarity. Rotary wings
VToL UAVs are of interest within this literature review. Two
main issues have been tackled by the research community
when dealing with them.

The first is that conventional VToL devices, such as mul-
tirotors UAVs with parallel axis, are underactuated and this
establishes several problems in stabilizing the vehicle and
tracking the desired trajectories. The most widely used con-
troller takes into account a hierarchical architecture [13], [14]
highlighting a time-scale separation between the linear (slow
time-scale) and angular (fast time-scale) dynamics. Moreover,
it is possible to show that the position and the yaw angle of
the VToL UAV are flat outputs [15], [16]. Hence, it is possible
to find a set of inputs to track any trajectory in the Cartesian

space with a desired heading angle of the UAV. This solves the
underactuation problem since tracking of the flat outputs (slow
time-scale part of the system) generates the references for the
low-level attitude controller (fast time-scale part of the sys-
tem). Other worthy approaches rely upon backstepping [17],
impedance [18] and optical flow [19] techniques.

The second issue is that the aerodynamic model of UAVs
is very complicated and several assumptions are made during
its derivation. This leads to robust control designs that are
worthy of interest within UAMs (see Section IV-B). Most of
them implement an integral action to resist against external
disturbances and cope with unknown and time-varying pa-
rameters (e.g., the battery level). Recently, adaptive controls
have been employed to counteract such disturbances [20], [21],
[22], [23], [24], [25]. A nonlinear force observer is introduced
in [26] to estimate disturbances applied to a quadrotor. A slid-
ing mode observer is instead employed in [27] to impose more
robustness on the closed-loop system. An attitude estimator
coping with magnetic disturbances and the bias of the gy-
rometers is proposed in [28]. Since passivity-based controllers
do not rely on the exact compensation of the considered
model, they are expected to be more robust to parameters
uncertainties. Port-Hamiltonian methods are developed in [26],
[29], [30], a passive backstepping in [31], and passivity-
based attitude controls in [32], [33], in particular without
angular velocity measurement in [34], [35]. A momentum-
based compensation of external wrench (force plus moment)
is introduced in [36], together with an impedance controller,
to reduce unmodelled effects and external disturbances further.
A hybrid estimation is instead proposed in [37], which does
not require the translational drift velocity of the UAV as an
input parameter.

A broader literature review about this topic can be found
in seminal works like the review on control and perception
techniques for aerial robotics in [38], the survey on small-
scale UAVs in [39] and VToL UAVs in [40], or particularly
quadrotors in [41]. Many textbooks have also been published
on the topic, like [13], [42], [43], and a handbook [44].

III. FLYING HANDS

Within the class of FHs, it is possible to consider those
platforms in which the carried object cannot be moved in-
dependently from the UAV. Therefore, two cases can be in
principle considered: i) the object, or a rigid tool like a gripper,
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Fig. 3. Example of a flying hand, in particular the Yale Aerial Manipulator
capturing a block in hover (picture taken from [45]).

is directly attached to the UAV; ii) the object is linked to the
aerial vehicle through some cables or tether mechanisms. An
example of FH is represented in Fig. 3.

Gripper directly attached to the UAV: The first question
to address once a gripper must be attached to the UAV is
its mechanical design. Usually, UAV’s payload is limited, and
the battery consumption increases once the total weight of
the FH approaches the limit. It is easily understood that the
bigger the carried payload, the bigger should be the capacity
of the single employed UAV. Since an FH can only grasp an
object and locally manipulate it without too much dexterity, it
is not convenient to complicate the mechanical design of the
gripper. Light-weight, low-complexity grippers are conceived
for quadrotors [46] and helicopters [47], even investigating
low-cost solutions [48]. Besides, these designed grippers for
FHs can be endowed with compliance concerning the external
environment [45], [48], [49] or not [46].

A further issue arising during the mechanical assembly of
an FH is where to place the gripper on the UAV. Regarding the
quadrotor, the rigid tool should be positioned above and not
below the aerial vehicle [50]. However, although this solution
is to be preferred from a theoretical point of view for the
internal stabilization of the FH, it raises some problems in
practical applications where it would be difficult for an FH to
grasp an object by approaching it from below.

During flight operations, it is intuitive that the coupling
between the grasped object and the aerial platform arises
several problems, like the destabilization of the UAV, also due
to the underactuation of the aerial vehicle and its intrinsically
unstable dynamics. Therefore, challenges encountered during
the take-off and the free-flight phases are addressed in [45],
[51] when a helicopter, or a quadrotor, transports a load
through a fixed gripper: stability bounds are derived not to
destabilize the employed flight controller. Besides, a hybrid
force/motion control framework is designed in [52] for a rigid
tool attached to the UAV.

Usually, the reviewed literature tends to include within the
class of FHs many devices having a rigid tool interacting with
the environment [53], [54]. Direct applications can be easily
seen in tasks like pushing [55], door opening [56] and aerial
writing [57]. The use of multiple aerial-ground manipulator
systems (MAGMaS) where one or more FHs grab an object
together with ground manipulators [58] is of interest as well.

Cables or tether mechanisms: Those devices where the
object is transported through cables by the aerial platforms
can be considered as FHs as well. The problem of lifting a
load from the ground through a cable connected to the UAV is
addressed in [59], [60]. An adaptive control to render the flight
agiler is exploited in [21] along with an optimal trajectory
generation. A fast trajectory optimization is instead tackled
in [61]. Analogous problems are faced by aerial robots tethered
by cables and/or bars to a (moving) platform [62], [63],
[64], [65]. A textbook collecting the latest results in planning
trajectory and control for UAVs with suspended payloads is in
press [66]. The case of multiple cooperative UAVs transporting
an object has also been widely investigated [67], [68], [69],
[70].

Fig. 4. Unmanned aerial manipulator composed by a multirotor, an eight
rotor aircraft in coaxial configuration, equipped by a 6-DoF servo-driven
manipulator, developed at CATEC within the ARCAS project [71]. More
details about this UAM can be found in [72], [73].

Fig. 5. Unmanned aerial manipulator composed by a multirotor, an eight
rotor aircraft in coaxial configuration, equipped by a 7-DoF servo-driven ma-
nipulator, developed at University of Seville within the ARCAS project [71].
More details about this UAM can be found in [74].
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IV. UNMANNED AERIAL MANIPULATORS

From the previous section, it is possible to infer the concept
that through an FH it is not possible to do more than pick-and-
place operations. As revised in this section, the opportunities
provided by UAMs may be fruitful to increase dexterity within
aerial manipulation tasks.

Four elements mainly constitute a UAM: i) the UAV floating
base; ii) the robotic arm; iii) a gripper or a multi-fingered hand
attached at the end-effector of the arm; iv) other sensors like
cameras, laser scanners, and so on. Figure 4 and Figure 5
illustrate the UAM concept.

Likewise the analysis carried out in the previous section,
the design of the mechanical arm is a crucial aspect also for
the UAMs. Moreover, the more dexterity can be added to the
aerial platform, the more solutions can be thought to design an
efficient UAM. Therefore, it is desirable categorizing a UAM
based on the different technological solutions that can be found
within the literature addressing the problem of mounting a
robot manipulator on a UAV.

1) A first distinction can be performed on the number of
DoFs of the employed arm: 1 DoF [75], 2 DoFs [76] or
more [72], [74].

2) A second distinction can be made based on the mechan-
ics of the joints of the robot arm. Most of the employed
joints are rotational: few examples of UAMs showing
prismatic joints can be found [77], [78], also displaying
compliant behaviors [79].

3) A further distinction can be made in the way how
the motors are controlled: directly in position, velocity,
acceleration, or torque-controlled motors [80].

4) Finally, a distinction can be made on the basis of
the resulting configuration: for instance, a Delta-like
structure is employed in [81], a parallel manipulator is
considered in [82], a hyper-redundant 9 DoFs robot arm
is designed in [83], while a redundant 7 DoFs fully
actuated anthropomorphic robot arm like the KUKA
LWR is employed in [84].

During flight operations, the presence of a carried object
creates coupling effects in the dynamic model of the system.
A mounted robot arm provides even more issues since its
dynamics depends on the actual configuration state of the
whole system. Basically, there are two approaches to address
planning and control problems for a UAM. The former is a
centralized approach, in which the UAV and the robotic arm
are considered as a unique entity, and thus the planning and
the controller are designed from the complete kinematic and
dynamic models. The latter approach considers the UAV and
the robotic arm as two separate independent systems. The
effects of the arm on the aerial vehicle are then considered
as external disturbances and vice versa. This approach might
be useful in case the dynamics of the arm is not enough to
compensate the UAV position error and/or in case the arm
does not allow torque control. The two next subsections follow
the above-sketched distinction in revising the related scientific
literature.

Notice that the same distinction can be made to control
UAMs with multiple arms attached to the aerial vehicle. This

Fig. 6. A UAM with a dual-arm system, developed and designed by the
University of Seville within the AEROARMS project [85]. Details of the
preliminary version can be found in [86], while the most advanced version
including visual servoing is described in [87].

configuration may be useful to bestow the system with higher
manipulation capabilities which could be required in several
inspection and maintenance activities. The use of multiple
arms on a UAV may extend the range of possible application
thanks to the increased ability of grab and dock on prohibitive
locations, while still perform dexterous accurate manipulation
with another arm. A further design is the possibility to have
a robot arm plus one or more articulated clamping devices
on the same aerial platform. As for the UAM with a single
arm, the design of a lightweight and human-size system is
essential [86]. The case of multiple arms in which all the
respective first joints are attached at the UAV’s center of mass
is investigated in [88], where it is demonstrated that such
a peculiar design is a differentially flat system. Regarding
carried out applications with a dual arm UAM is worth
mentioning the aerial valve-turning task developed in [89],
[90]. Recently, the PRODRONE company has unveiled an
UAM with a dual robot arm large-format drone [91]. The
first developed autonomous prototype for research centers is
instead represented in Fig. 6.

A. Centralized approach

Since the aerial platform and the robotic arm are seen as
a paired entity, the first step is the derivation of its dynamic
model. Typically, two approaches can be followed: the stan-
dard Euler-Lagrangian formalism, in which it is possible to
have a symbolic matrix form of the whole dynamic model [92],
[93], and the Newton-Euler recursive formulation which has
more simplifications from a coding point of view [94], [95].

Regardless the method employed to derive the dynamic
model, several model-based approaches have been developed
so far to cope with the issues drafted above. A simple full-
state feedback LQR is designed near the equilibrium point of
the whole dynamic system in [75]. An adaptive sliding mode
controller is instead introduced in [76]. A backstepping-based
controller for the UAM that uses the coupled full dynamic
model is addressed in [74], while an admittance controller
for the manipulator arm is designed. An output feedback
linearization and stable zero dynamics are exploited in [78].
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A combination of gain-scheduling and Lyapunov-based model
reference adaptive control (MRAC) is addressed in [96]. A
hierarchical controller, employing a closed-loop inverse kine-
matic algorithm (CLIK) within the first layers, is designed
in [97]. An impedance filter based on the wrench measures
provided by a sensor mounted on the arm’s wrist, an inverse
kinematic module and a motion controller are combined to
reduce the interaction forces of the end-effector with the
environment [98]. Further theoretical work has revealed an
underlying structure of the centralized dynamics helping the
control design [75]. Depending on the employed UAM, it
is possible that the mechanical system is redundant for the
given task. Therefore, a Cartesian impedance control with
redundancy resolution is described in [93]. Notice that even if
the UAM is redundant for the task, the underactuation problem
regarding the actuation of the UAV persists.

Concerning the applications where UAMs have been em-
ployed following such centralized approach, a simulated hole
insertion has been investigated in [99], while an aerial valve-
turning task is instead inspected in [100].

B. Decentralized approach

In case the aerial platform and the attached robot arm
are seen as two independent entities, the mechatronic and
control problems are addressed separately. On the one hand,
the control of the sole robot manipulator is well-established
in the literature [101], and it is out of the scope of this letter.
On the other hand, the control of the single UAV has already
been examined briefly in Section II.

Since the two main components of the UAM are controlled
independently, robust control of both the UAV and the robot
arm is sought because the movements of the robot arm are
seen as a perturbation for the aerial platform and vice versa.
Suitable disturbance observers and robust controller are thus
adequately designed in a decentralized approach for UAMs.
The literature review reveals a multilayer architecture to con-
trol multirotor UAVs equipped with a servo robot arm [73],
where the momentum-based observer presented in [36], [102]
is employed to compensate neglected aerodynamic effects and
the arm dynamics. A variable parameter integral backstepping
controller improves the results obtained by a simple PID-
based controller for the UAV [103]. A UAM composed of
a helicopter and a fully actuated redundant robot arm (a Kuka
LWR with 7 DoFs) does not show coupling effects when the
center of gravity of the arm is moved in the lateral plane of the
helicopter: forcing the movement of the arm in that direction,
thanks to its intrinsic redundancy, exhibits a coupling between
the UAV and the manipulator only at a kinematic level [84].

V. BRIEF LITERATURE REVIEW ABOUT SPACE
MANIPULATION

Space manipulation shares several open issues with aerial
manipulation like mobility, teleoperation, and autonomy, ad-
ditionally coping with extreme environments (microgravity,
extreme temperatures, high vacuum, fine dust, high pressure,
corrosive atmospheres, radiations, and so on). Hence, it is
worth briefly revising the related literature.

Historical developments for space robotics systems can be
found in [11]. Four categories of space manipulators are typ-
ically considered: i) free-floating manipulator systems, where
the platform fluctuates due do the movements of the moving
manipulators, and the kinetic momentum of the system is
conserved if no external wrench is applied; ii) macro-mini
manipulator systems, composed of a relatively small arm for
fine manipulation mounted on a more prominent arm for
positioning; iii) flexible-based manipulator systems, that is
as a macro-mini manipulator with the macro arm acting as
an elastic structure; iv) mobile robots with articulated limbs,
like wheeled vehicles or walking robots for exploration of
the planetary surface. It is easily recognizable that the first
category has affinities with a UAM.

Among various applications within space manipulation, it is
worth citing the problem of grasping a target satellite through a
free-floating manipulator system. The target satellite is uncon-
trolled and non-cooperative. Such grasping task may be solved
within the context of optimal or nonlinear control [104], [105],
[106], with use of the onboard sensor signals, or in that of tele-
presence control, with a human operator in the loop [107]. By
employing a satellite’s motion estimation parameters [108],
a nonlinear optimization algorithm for optimally solving the
task is presented in [109] to overcome the presence of local
solutions.

In conclusion, space robotics does not have a structured
environment like industrial applications, and it shares several
issues of aerial manipulation with UAMs. However, hardware
handled by space robots is much more expensive and very
delicate. Performing repetitive experiments is not suitable, and
it is indeed very complicated for logistic reasons. Recreate on
the Earth zero/micro-gravity conditions is also costly and not
so doable in every research center. Simulations should be very
sophisticated to reduce the testing time on real space floating
platforms.

VI. CONCLUSION

Aerial manipulation can be considered as the natural evo-
lution of mobile robotics, adding manipulation capabilities
to the versatility and agility of VToL UAV, as well also to
floating space platform and bigger UAV such as helicopters
and so on. Without doubts, this will improve the quality of
the job of many workers operating in dangerous and hazardous
conditions and situations.

However, it is also evident that a lot of work is still on
the way. Several deductions can be concluded from the above
literature review. In general, energy and safety issues are two
main limitations. The lack of high accuracy is also relevant in
some applications. A significant challenge of the next decade
is doubtlessly related to power consumption and short-lived
batteries, but this is out of the scope of this letter. On the other
hand, uncertified aerial devices are forcing several countries
to introduce proper restriction laws to limit the use of drones
in open and crowded spaces for safety reasons. As pointed out
by the SPRINT Robotics roadmap [110], such aerial devices
must instead be able to work in real-world scenarios, opposed
to almost organised laboratory environments, in which the
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weather may be inclement and the equipment must be ade-
quately verified (i.e., it must be explosion proof through ATEX
or IECEx certifications).

Therefore, mechatronics for both FHs and UAMs is indeed
a crucial aspect. Despite the results pointed out throughout
the above literature review, significant challenges are still
under development to improve the safety and energetic issues
sketched above. Further investigation is needed to strengthen
the connection between the mechanical system design and the
performance of the aerial manipulator in real applications.
Mechanical design and control should thus be conceived
together and not as two separate steps. As an example, while
it has been discovered that a grasping tool should place above
a quadrotor to increase internal stability, a similar study is
missing for the UAMs to the best of authors’ knowledge.
Hybrid mechatronic solutions combining the best part of a
single configuration may also be conceived.

The SPRINT roadmap mentioned above also highlights
some opportunities for robots, and of course aerial manipulator
devices, in inspection and maintenance. Citing some examples
with particular reference to the aerial robotic domain, robots
can help/replace human operators on remote and offshore
sites; robots can operate in hazardous tasks like reaching
the highest places of a plant or a building; robots can help
in scaffolding that usually is associated with a risk for the
human health; aerial devices can increase the total number of
inspections of a plant, monitoring the wear of the components.
These sought achievements should be reached not only by
coping with the issues outlined above but also by improving
the environmental performance. However, aerial manipula-
tion activities are prerogative of universities and research
centers so far. To counteract this, recently, the European
community has financed several projects within latest fund-
ing programs in remote aerial inspection (AIRobots, [111]),
cooperative robot system assembly and structure construction
(ARCAS, [71]), mixed ground and aerial robotic platform to
support search and rescue activities (SHERPA, [112]), robotics
challenge for plant servicing and inspection using aerial tech-
nology (EuRoC, [113]), collaborative aerial robotic workers
(Aeroworks, [114]), aerial robotic system integrating multiple
arms and advanced manipulation capabilities for inspection
and maintenance (AEROARMS, [85]). An innovation from
AEROARMS project has recently been the Overall Winner
of the European Commission Innovation Radar Prize [115].
These projects tried, or are trying, to reduce the gap for a fast
technology migration from academia to industry, but it is still
a challenging road.
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