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Abstract

In this paper, disturbance reconstruction and robust trajectory tracking control of biped robots with hybrid dynamics in
the port-Hamiltonian form is investigated. A new type of Hamiltonian function is introduced, which ensures the finite-
time stability of the closed-loop system. The proposed control system consists of two loops: an inner and an outer loop.
A fractional proportional-integral-derivative filter is used to achieve finite-time convergence for position tracking errors
at the outer loop. A fractional-order sliding mode controller acts as a centralized controller at the inner-loop, ensuring
the finite-time stability of the velocity tracking error. In this loop, the undesired effects of unknown external disturbance
and parameter uncertainties are compensated using estimators. Two disturbance estimators are envisioned. The former
is designed using fractional calculus. The latter is an adaptive estimator, and it is constructed using the general dynamic
of biped robots. Stability analysis shows that the closed-loop system is finite-time stable in both contact-less and impact
phases. Simulation studies on three types of biped robots (i.e., two-link walker, RABBIT biped robot, and flat-feet biped
robot) demonstrate the proposed controller’s tracking performance and disturbance rejection capability.

Keywords: Bipedal robots, Hybrid systems, Port-Hamiltonian dynamics, Fractional sliding surface, Finite-time control,
Disturbance estimator

1. Introduction

In the near future, bipedal robots are expected to be
employed in a broad set of applications within industries,
service works, and medical activities [1, 2, 3, 4, 5]. To
achieve this goal, it is worth studying humans’ outstand-5

ing features in-depth, such as robustness, dexterity, and
adaptability in different environmental conditions. In the
last decade, numerous control algorithms were proposed
for the motion control and the stabilization of the legged
robots [6, 7, 8, 9, 10, 11, 12, 13]. Due to the intrinsic10

structure complexity, the nonlinearity problems, the exis-
tence of discrete dynamics caused by environmental im-
pacts, and the undesired effects of external disturbances,
the biped robots’ dynamic control is still challenging.

In this paper, the design of a robust controller is car-15

ried out to estimate the unknown external disturbances
adaptively and, thus, preserve the stability of biped
robots against interaction, impacts, and environmental
constraints.

1.1. Related works20

A hybrid system can describe the dynamic behavior of
a typical biped robot having multi-phase properties given
by the swing and stance phases of the legs. The impulse
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effect is caused by the hitting of legs to the walking sur-
face and environmental constraints. Many works about25

the control of biped robots in a hybrid form were pre-
sented in the literature [14, 15, 16, 17, 18, 19, 20, 21].
Several of them focused on the stability analysis of peri-
odic orbits in walking biped robots using Poincaré maps
[22, 23, 24, 25, 26]. The main drawback of employing a30

Poincaré map is that, in practical applications, it must
be approximated via numerical methods, and it has no
closed-form solutions. A hybrid feedback control scheme
was proposed in [27] to stabilize the biped robot’s walking
and in which the parameters of the central controller were35

regulated via an event-based technique. The disadvantage
of using this method is that there is a considerable de-
lay between the affecting time of the external disturbance
and the applying time of the control signal. On the other
hand, many results were presented on the control and sta-40

bilization of hybrid dynamical systems. However, several
issues still need to be discussed, such as selecting the ap-
propriate Lyapunov functions for stability analysis, inves-
tigating finite-time convergence problems, and designing
disturbance estimators for hybrid nonlinear systems.45

As well known, the dynamic equations of most of the
electro-mechanical systems such as electric vehicles, un-
manned aerial vehicles, and legged robots can be writ-
ten in the so-called port-controlled Hamiltonian (pH) form
[28, 29, 30, 31]. In a mechanical pH system, the Hamil-50

tonian function is the sum of the kinetic and potential
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energies. Besides, it can be labeled as a Lyapunov func-
tion candidate in the stability analysis. In the last decay,
pH-based modeling and control have attracted much atten-
tion and provided significant outcomes [32, 33, 34, 35]. For55

instance, nonprehensile manipulation of a rolling robotic
system based on the pH framework and a passivity ap-
proach was investigated in [36]. Based on the energy-
shaping method, a static and a dynamic feedback control
scheme were applied to stochastic pH systems in [37]. New60

studies were carried out by inserting the impulse effects on
pH systems. Recently, a study on the stabilization prob-
lem and H∞ control for a switched pH system with actua-
tor saturation was published in [38]. In this last work, the
stability analysis was examined by applying the dwell time65

method and multiple energy-based Lyapunov functions.

To the authors’ best knowledge, no results can be found
that have addressed the issues of finite-time stabiliza-
tion and disturbance estimator-based robust control for
switched pH systems, simultaneously. Finite-time sta-70

bility analysis is a criterion that can be used to evalu-
ate the stability characteristics in the dynamic motion of
biped robots. A finite-time control problem for stabiliza-
tion of periodic orbits in an underactuated biped robot
based on a feedback linearization technique and a Poincaré75

map was addressed in [39]. However, that control sys-
tem is not robust against parameter uncertainties and ex-
ternal disturbances: thus, due to the influence of these
factors, the stability of the periodic orbits may be dis-
turbed. Using fractional operators in designing procedure80

can lead to significant improvement in the transient and
steady-state performance. Also, it can improve the robust-
ness and reduce, or even eliminate, chattering phenom-
ena [40, 41]. Fractional calculus was used in the control
of singular perturbed systems [42], solving optimal con-85

trol problems [43], tracking control of legged robots [44],
fault diagnosis and classification [45], and formation con-
trol of multi-agent systems [46]. Besides, fractional-order
disturbance observer, which is derived from the integer-
order type, was applied to synchronization of two uncer-90

tain fractional-order chaotic systems [47]. Despite these
remarkable contributions, fractional calculus has not been
applied so far to the class of hybrid systems, especially hy-
brid pH systems with external disturbances. Solving the
above problems for hybrid pH systems using fractional cal-95

culus constitutes the framework of this research work.

1.2. Contributions

Motivated by the above discussions, the objective of this
study is to develop a new control law based on fractional
calculations for uncertain hybrid dynamics of biped robots100

in the pH form. The key contributions of this research
work are listed below.

• The primary interest is to replace the system’s total
energy, the Hamiltonian, as a function of the system
states.105

• A two-loop control system architecture is imple-
mented, i.e., a position control loop and velocity con-
trol loop.

• A fractional-order proportional-integral-derivative
(PID) position controller is used in the position con-110

trol loop. In contrast, a central fractional-order slid-
ing mode controller is designed for the velocity loop.

• Two approaches are proposed for disturbance recon-
struction: the former employs a fractional calculation;
the latter employs an adaptive disturbance estimator.115

• By accommodating the central controller with the es-
timated results, the robustness of the system against
unknown disturbance is fulfilled.

• Lyapunov stability theorem ensures the finite-time
stability of the closed-loop system during both the120

swing phase and the impacts.

In the final part of this work, the trajectory tracking
and the robustness performance of three types of biped
robots under impact effects, parameter uncertainty, and
external disturbance are evaluated. The results indicate125

the effectiveness of the proposed control algorithms.

1.3. Outline

The outline of this paper is organized as follows. The
hybrid dynamic description of the biped robots and some
preliminaries are exhibited in Section 2. The main re-130

sults on the fractional-order PID position controller, the
fractional-order sliding mode velocity controller, the esti-
mators’ structure, and the stability analysis of the closed-
loop system are presented in Section 3. In Section 4, three
numerical simulations are provided to justify the feasibil-135

ity of the proposed control method and the effectiveness
of the theoretical results. The conclusion is brought in
Section 5 as the final part of the paper.

2. Preliminaries and problem statement

In this section, preliminary knowledge about hybrid dy-140

namics of biped robots in the pH form and fractional cal-
culus are introduced, which are employed together as the
basis of the next subsections.

2.1. Hybrid dynamic equations of the biped robots and pre-
liminaries145

The dynamic model of biped robots consists of nonlinear
differential equations for the swing phase and algebraic
equations for the collision or stance phase. The following
subsections display the two phases mentioned above that
are in turn collected in a hybrid model in the pH form.150
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2.1.1. Leg dynamics in swing phase

Using Euler-Lagrange method, the governing dynamic
equation of a swing leg is given by

M(q)q̈ + C(q, q̇)q̇ + g0(q) = Bτ, (1)

where q ∈ Rn and q̇ ∈ Rn are the state vectors of the biped
robots representing the position and velocity of the joints,
respectively; M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, and g0(q) ∈
Rn are called the inertia matrix, the Coriolis matrix, and155

the vector of gravitational terms, respectively. Finally,
B ∈ Rn×m is the allocation matrix for the actuation joint
torques/forces τ ∈ Rm, with 0 < m ≤ n.

2.1.2. Constraint equations in stance phase

Constraints on the biped robot’s state appear when the160

following three conditions are established in a swing leg
[25]:

i the swing leg is ahead from the support leg in the head-
ing direction;

ii the movement direction of the swing leg is downward;165

iii the swing leg hits the ground surface.

When the swing leg strikes the walking surface, discon-
tinuities occur in the joints’ positions and velocities, which
may yield instability of the biped robot. The impact ef-
fects on the states of the biped robot are expressed as [14]{

q+ = ∆nq
−,

q̇+ = ∆sq̇
−,

(2)

where ∆n ∈ Rn×n and ∆s ∈ Rn×n are called position re-
naming and velocity resetting matrices, respectively. Be-
sides, the apexes + and − denote the quantities at a time
instant after and before the impact, respectively.170

The following assumption is made throughout the paper.

Assumption 1. The impact time of the swing leg with
the walking surface is instantaneous, and the support leg
immediately leaves the walking surface.

2.1.3. Hybrid model in port-Hamiltonian form175

Assuming that the contact time of a robot leg occurs
at the moment tk ∈ R, with (k = 0, 1, 2, ...), the hybrid
dynamics of the biped robots can be written asM(q)q̈ + C(q, q̇)q̇ + g0(q) = Bτ, t 6= tk,

[q+
T

, q̇+
T

]T =
[
(∆nq

−)T (∆sq̇
−)T

]T
, t = tk.

(3)
Defining the momentum vector of the system as p =

M(q)q̇ ∈ Rn, the dynamic equations (1) can be rewritten
in the class of first-order ordinary differential equation as

dq

dt
= f(q, p) =

∂H(q, p)

∂p
,

dp

dt
= g(q, p) +Bτ = −∂H(q, p)

∂q
+Bτ,

(4)

where f(q, p) = M−1(q)p, g(q, p) = Ṁ(q)q̇ − C(q, q̇)q̇ −
g0(q), and H(q, p) ∈ R is the Hamiltonian function of the
system with the following definition

H(q, p) =
1

2
pTM−1(q)p+ V (q), (5)

where V (q) ∈ R is the potential energy of (1). The general
pH form of (3) can be written as:ẋ = Ω∇H +Gτ, t 6= tk,

x+ =
[
(∆nq

−)T δp(x,∆n,∆s)
T
]T
, t = tk,

(6)

with x =
[
xT1 xT2

]T
=

[
qT pT

]T
,

∇H =
[
(∇qH)

T
(∇pH))

T
]T

=[(
∂H(q, p)

∂q

)T (
∂H(q, p)

∂p

)T]T
, G =

[
Om×n BT

]T
,

δp(x,∆n,∆s) ∈ Rn the vector addressing the impact
at the momenta’s level, that is δp(x,∆n,∆s) = p+ =
M(q+)q̇+ = M(∆nq

−)∆sq̇
− = M(∆nq

−)∆sM
−1(q−)p−,

and

Ω =

[
On×n In
−In On×n

]
,

where In ∈ Rn×n and Oi×j ∈ Ri×j are identity and zero
matrices of proper dimensions, respectively.

Theorem 1. For a nonlinear system ẋ = −Σ∇H(x),
where Σ ∈ R2n×2n is a positive definite matrix, if the en-
ergy function H(x) is chosen as

H(x) = (xTY x)β , (7)

where 1 < β < 2, and Y ∈ R2n×2n is a positive definite
matrix, then the system is finite-time stable.

Proof. Taking time derivative of (7) yields

Ḣ(x) = ∇HT ẋ ≤ −λmin(Σ)∇HT (x)∇H(x)

≤ −4λmin(Σ)β2(xTY x)2β−2(xTY Y Tx)

≤ −4λmin(Σ)β2λmin(Y )Hη

(8)

where η = 2β−1
β < 1 and λmin(·), λmax(·) ∈ R represent180

the minimum and maximum eigenvalue of the given ma-
trix, respectively. The above result shows the finite-time
stability of the system.

Remark 1. The value of β in (7) determines the type of
stability (i.e., finite-time or asymptotic stability). In par-185

ticular, if β ≥ 2 then the selected Hamiltonian function (7)
cannot guarantee the finite-time stability, and the obtained
results decline to the traditional asymptotic stability [48].

Let 0× ∈ R× be the zero vector of proper dimension.

Definition 1 ([49]). For the hybrid system (6), with τ =
0m and under the following condition

H(x(t0)) < b1 ⇒ H(x(t)) < b2, ∀t ∈ (0, tf ], (9)

where 0 < b1 < b2, and tf > 0, the system response is190

finite-time stable.
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Figure 1: The devised conceptual two-loop scheme to control biped robots.

2.2. Fractional calculus

In order to fully understand the work, the fundamental
definition and properties of fractional calculus are given in
this section.195

Among the fractional operators, which were intro-
duced in the fractional mathematics, Caputo and Rie-
mann–Liouville fractional operators have attracted good
attentions in the field of control systems [46]. Due to great
applications and well-accepted physical interpretations of
Caputo’s fractional derivative, the Caputo fractional oper-
ator is employed in this work [50]. The Caputo fractional
derivative of order α ≥ 0 is defined as

Dαf(t) =
1

Γ(n− α)

∫ t

t0

fn(r)

(t− r)α−n+1
dr, (10)

where f(t) ∈ Rn is a time-dependent function, t0 ∈ R is
the initial time of the integration, m− 1 < α < m, m ≥ 1,
and Γ is called the Gamma function with the following
definition

Γ(z) =

∫ ∞
0

ιz−1e−ιdι. (11)

Property 1 ([50]). For the optional scalars a1 and a2,
the fractional orders α1 and α2, and two time-dependent
functions f1(t) and f2(t), the following relations hold

Dα(a1f1(t) + a2f2(t)) = a1D
αf1(t) + a2D

αf2(t), (12)

D1−α(Dαf(t)) = ḟ(t), (13)

and
Dα1(Dα2f(t)) = Dα1+α2f(t). (14)

2.3. Problem statement

This paper’s control objective is to design a fractional
calculus-based estimator, an adaptive estimator for exter-
nal disturbances in biped robots, and a robust centralized
fractional-order sliding mode controller for rendering the200

states of the biped robots to the desired ones. The con-
troller structure ensures that all signals of the closed-loop
system will be finite-time stable in both the swing phase
and the impact (i.e., the measured states of the system
converge to the desired trajectories in a finite-time).205

3. Main theoretical results

This section explains the design procedure of a robust
fractional-order sliding mode controller based on an exter-
nal estimator. The conceptual block diagram of the closed-
loop control system is illustrated in Fig. 1. This scheme210

includes a block containing the biped robot’s hybrid dy-
namics, the gait planner block, and the control system’s
blocks. The gait planner produces, instead, the desired
joint positions and velocities for the biped robot. The
control scheme consists of two control loops: the outer215

and the inner loops. The outer-loop contains the position
controller whose output is the desired velocity signal. At
the velocity loop, besides the control of the joint velocities,
the effects of parameter uncertainty and external distur-
bances are compensated. The devised controller structure220

provides better flexibility for designers to shape the biped
robots’ trajectory tracking response. In the following, the
details of this two-loop control scheme are discussed.

Define the position tracking vector, ex(t) ∈ Rn, and
velocity tracking error vector, ev(t) ∈ Rn, as

ex(t) = x1(t)− x1d(t), (15)

ev(t) = x2(t)− v(t), (16)

where x1d(t) ∈ Rn is the desired position trajectory vector,
and v(t) ∈ Rn is the output of the following fractional-
order proportional-integral-derivative filter

v(t) = Kpex(t) +KdD
αex(t) +KiD

−αex(t), (17)

where Kp,Kd,Ki ∈ Rn×n are positive definite matrices,
which shape the position tracking response of the con-225

trolled robotic system in the outer loop, and Dαex(t)
and D−αex(t) represent the fractional derivative and frac-
tional integral of position tracking error vector, respec-
tively. Note that the relation (17) can be considered as a
fractional sliding surface for the position loop.230

Remark 2. Designing the fractional-order sliding sur-
face (17) for the position loop has advantages with respect
to its integer-order type, α = 1, such as superior speed con-
vergence rate, less or without overshoot/undershoot, and
less steady-state tracking error. The convergence behavior235

4



Figure 2: The convergence behavior of tracking errors for different
values of fractional order α, with Kp = 5, Kd = 1.5, and Ki = 2.5.

of the tracking error for four values of α, namely α = 0.25,
α = 0.6, α = 0.9, and α = 1, and with three filter gains
Kp = 5In, Kd = 1.5In, and Ki = 2.5In, and for the case
that the position loop is in the sliding mode, v(t) = 0, are
exhibited in Fig. 2. For the smaller α, α = 0.25, an excel-240

lent tracking performance is observed For α = 1, instead,
the most degraded tracking performance is perceived, that
is, the convergence speed decreases while the undershoot,
settling time, and the steady-state tracking error increase.

Taking the time derivative of (16), and considering
the external disturbance effect and parameter uncertainty,
d(x, t) ∈ Rn, the dynamic equations of the velocity track-
ing error can be written as{

ėv(t) = −∇qH +Bτ + d(x, t)− v(t), t 6= tk

e+v = δv, t = tk
(18)

where δv ∈ Rn is the difference between the measured and245

desired momenta resetting vectors, δv = δp−δpd , where δpd
is the desired momenta resetting vector, computed from
x1,d = qd and v(t), and where dependencies are suppressed
to shorten notation. It is important to note that the ele-
ments of the disturbance term, d(x, t), have the dimension250

of velocity and an acceleration-like terms such as the time
derivative of the momenta.

3.1. Robust tracking controller design

In this section, the idea of constructing a centralized
fractional-order robust sliding mode controller for the in-255

ner loop is presented. Notice that the hypothesis of ne-
glecting the disturbance within (18) will be relaxed in
the next subsection, in which a robust control law will
be added to the control signal to maintain the robustness
of the closed-loop system against external disturbance.260

In the velocity loop, the following fractional non-
singular terminal sliding surface is used

s(t) = D−1
[
Dσev(t) +Ks1e

ζ
v(t) +Ks2sign(ev(t))

]
, (19)

where Ks1 ∈ Rn×n and Ks2 ∈ Rn×n are two positive defi-
nite matrices, σ > 0, and ζ < 1.

Assumption 2. The following Lipschitz conditions are
established for the nonlinear function δv and its fractional
derivatives as,

‖Dσ−1δv‖
β ≤ γ1‖Dσ−1ev‖

β
, (20)

‖D−1(δv)
ζ‖
β
≤ γ2‖D−1evζ‖

β
, (21)

‖D−1sign(δv)‖β≤ γ3‖D−1sign(ev)‖β , (22)

where γi > 0, with i = 1, 2, 3.

The proposed centralized fractional-order robust sliding
mode controller for the velocity loop has the following ex-
pression

τ = τeq = −B−1[−∇qH +D1−σ(Ks1e
ζ
v

+Ks2sign(ev))− v(t) +Ks3s(t) +Ks4s(t)
µ]

(23)

where 0 < µ < 1 and Ks3 ,Ks4 ∈ Rn×n are two positive
definite gain matrices.265

In the following theorem, the result of the controller
design for the pH dynamic of the introduced bipedal robot
is given.

Theorem 2. Consider the hybrid dynamics of the bipedal
robot in (18), with d(x, t) = 0n, and the fractional sliding
surface (19). The proposed control law (23) ensures the
finite-time stability of the sliding surface with the following
reaching time

tr ≤ t0+
1

2λmin(Ks3)(1− µ)

ln

(
λmin(Ks3)Vs

1−µ
β + λmin(Ks4)

λmin(Ks4)

)
,

(24)

where Vs(·) is the energy function of the systems (18).

Proof. The time derivative of s(t) is

ṡ(t) = D−1+σ(D2−σs(t))

= D−1+σ ėv(t) +Ks1e
ζ
v +Ks2sign(ev(t))

= D−1+σ[−∇qH +Bτ ] +Ks1e
ζ
v

+Ks2sign(ev(t)).

(25)

Replacing the equivalent control law (23) yields

ṡ(t) = −Ks3s(t)−Ks4s(t)
µ. (26)

Consider the following Lyapunov function which is taken
equal to the Hamiltonian of the overall system

Vs(s) = (s(t)TY s(t))β . (27)

Taking time derivative of V (s) yields

V̇s(s) = 2β(s(t)TY s(t))β−1(s(t)TY ṡ(t)). (28)
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Folding (26) into (27) yields

V̇s(s) = −2β(s(t)TY s(t))β−1(s(t)TY (Ks3s(t)

+Ks4s(t)
µ))

≤ −2β
[
λmin(Ks3)Vs(s) + λmin(Ks4)Vs(s)

β+µ−1
β

]
,

(29)

which indicates that the sliding surface (19) is attractive
with finite-time convergence property. The previous equa-
tion is rewritten as follows to calculate the reaching time

dt ≤ −dVs(s)

2β

[
λmin(Ks3)Vs(s) + λmin(Ks4)V

β+µ−1
β

s (s)

] . (30)

Integrating the both sides of the previous inequality, from270

t0 to tr, and considering that at the reaching time the value
of Vs(t) is zero, Vs(tr) and tr can be thus obtained.

3.2. Estimator-based robustness enhancement

In the previous section, a two-loop architecture for the
closed-loop system was presented. A fractional sliding275

mode controller with the aim of trajectory tracking for the
biped robots was proposed. In the case that the param-
eter uncertainties and external disturbance in the robot
dynamics cannot be neglected (i.e., d(x, t) 6= 0n in (18)),
the controller structure should be adapted to eliminate or280

reduce their adverse effects so that the robustness of the
system increases. One extensively carried out solution in
the literature considers a sign function as a robust control
law. Its amplitude is chosen based on the upper bound
of the disturbance function d(x, t). Due to the insufficient285

knowledge about the maximum amplitude of d(x, t), the
tuning of robust control gains is not a simple work. The
selection of high values for robust control gains increases
the amplitude of the control effort and the system’s to-
tal energy. The selection of low values for robust control290

gains leads to decreased system performance and increased
tracking error. An efficient approach to dealing with the
system dynamics’ undesired signals is online control and a
disturbance estimator.

Considering the disturbance estimator result, the cen-295

tralized control signal (23) is modified as:

τ = τeq + τrob (31)

where

τrob = −B−1d̂(x, t) (32)

and d̂(x, t) is the estimated value of d(x, t). In the fol-
lowing, the reconstruction of the external disturbance is
explained using two approaches .300

3.2.1. Fractional calculus-based disturbance reconstruction

The structure and the design methodology of the frac-
tional calculus-based disturbance estimator is given in the
following theorem.

Theorem 3. Consider the closed-loop system dynamics
of a biped robot in pH form (18) and the fractional slid-
ing surface (19). The following fractional calculus-based
estimator reconstructs the value of unknown lumped dis-
turbance function

d̂(x, t) =
1

ρ

[
D−1 (Ks3s(t) +Ks4s(t)

µ) +D1−σs(t)
]
,

(33)
where ρ > 0 and d(x, 0) = 0n.305

Proof. Taking the 2 − σ order fractional derivative from
both sides of (19), substituting the closed-loop system dy-
namics (18), and using the equivalent control term (23)
yield

D2−σ = ėv +D1−σ [Ks1s
ζ +Ks2sign(s(t))

]
= −∇qH +Bτ + d(x, t)

+D1−σ [Ks1s
ζ +Ks2sign(s(t))

]
= d(x, t)− d̂(x, t)− (Ks3s(t) +Ks4s(t)

µ) .

(34)

The proposed estimator wants to achieve the following
relationship between d̂(x, t) and d(x, t) in the Laplace do-
main

L[d̂(x, t)] =
1

1 + ρς
L[d(x, t)], (35)

where ς ∈ C is the Laplace complex variable and L[·] is the

Laplace transform operator. Subtracting L[d̂(x, t)] from
both sides of (35) yields the following equation

ρςL[d̂(x, t)] = L[d(x, t)]− L[d̂(x, t)]. (36)

Considering d(x, 0) = 0n, applying the inverse Laplace
transform to the previous equation, and substituting in
turn the result within (34) yield

D2−σ = ρ
˙̂
d(x, t)− (Ks3s(t) +Ks4s(t)

µ) . (37)

Integrating D−1 in the fractional domain both sides of
(37) gives

D1−σ = ρd̂(x, t)−D−1 (Ks3s(t) +Ks4s(t)
µ) . (38)

Therefore, the reconstructed value of d(x, t) at any instant
can be obtained from

d̂(x, t) =
1

ρ

[
D−1 (Ks3s(t) +Ks4s(t)

µ) +D1−σs(t)
]
.

(39)

Remark 3. The designed fractional calculus-based distur-
bance estimator (39) can be referred to as a dynamic-free
estimator. Indeed, it uses only the variable of fractional
sliding surface to estimate the unknown lumped distur-310

bance.
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3.2.2. Adaptive estimator-based disturbance reconstruc-
tion

In this section, the reconstruction of external distur-
bances using an adaptive estimator is investigated. The
proposed adaptive disturbance estimator is described by

d̂(x, t) = φ(x, t) +Ke1x2

φ̇(x, t) = Ke1(−∇qH + v(t)− τ − d̂(x, t))

+Ke2sign(s(t))

(40)

where Ke1 ,Ke2 ∈ Rn×n are positive definite gain matrices.

Remark 4. In (40), a nonlinear sliding mode disturbance315

observer is proposed to estimate the lumped disturbance
in pH form dynamics of the biped robots. Compared with
the available nonlinear disturbance observer [51, 52], a
discontinuous term related to the sliding mode variable
is introduced to enhance the robustness. In addition, it320

can estimate lumped disturbance term in a finite time. A
fractional-order sliding mode disturbance rejection is devel-
oped to achieve finite-time convergence based on the pro-
posed disturbance observer.

The following assumption is considered.325

Assumption 3. The disturbance function continuously
changes without any disruption over time. Besides, the
norm of ḋ(t) is bounded, i.e., ‖ḋ(t)‖≤ ld, with ld > 0.

Theorem 4. Consider the hybrid tracking error dynamics
of a biped robot (18) under Assumption 3 and using the
external disturbance estimator (40). In case the fractional
sliding mode controller (23) is applied and the following
parameters are designed as indicated below

Ke1 = 0.5Ks1 ,

Ke2 = ϑKs2 ,

λmin(Ks2) ≥ (κ+ 4ϑ2)
2

+ 4κld + 4ld
2 + 4ϑ2

4ϑκ
,

(41)

where κ > 0 and ϑ > 0, then the finite-time convergence of
the sliding variable dynamics ṡ(t) is guaranteed and the ex-330

ternal disturbance d(x, t) is reconstructed in a finite-time.

Proof. Let d̃(x, t) = d(x, t) − d̂(x, t) be the disturbance
estimation error. Taking its time derivative and using (18)
give

˙̃
d(t) = −Ke1 d̃(x, t)−Ke2sign(s(t)) + ḋ(x, t). (42)

Applying the equivalent controller (23) to the sliding
surface dynamics (25) and considering (31)-(32) yield

ṡ(t) = −Ks1s(t)−Ks2s(t)
µ + d̃(x, t). (43)

Define the following new state vector χ ∈ R2n as

χ =
[
χT1 χT2

]T
=
[
(s(t)µ)T d̃(x, t)T

]T
. (44)

Considering Assumption 3, the following relationship is
established between ḋ(x, t) and χ1

ḋ(x, t) = ‖s(t)‖−µωχ, (45)

where ω ≤ ld. Taking the time derivatives of χ1 and χ2 in
(44) and setting µ = 0.5 giveχ̇1 =

1

2

(
‖s(t)‖−0.5

(
−Ks2χ1 + d̃(x, t)

)
−Ks1χ1

)
,

χ̇2 = ‖s(t)‖−0.5(−Ke2χ1 + ω)−Ke1χ2.

(46)
Equation (46) can be transformed into a matrix form as

χ̇ = ‖s(t)‖−0.5Aχ+Bχ, (47)

where A =

[
−0.5Ks2 0.5In

(ωIn −Ke2 On×n

]
and B =[

−0.5Ks1 On×n
On×n −Ke1

]
.

Choose the Lyapunov function as

Ve(χ) = (χTY χ)β , (48)

where Y =

[
(κ+ 2ϑ2)In −2ϑIn
−2ϑIn In

]
. Differentiating Ve(χ)

with respect to time and using (47) yield

V̇e(χ) = β(χTY χ)β−1(χ̇TY χ+ χTY χ̇)

= β(χTY χ)β−1(‖s(t)‖−0.5χT (ATY + Y A)χ

+ χT (BTY + Y B)χ) =

− βλmin(Y −1Q1)‖s(t)‖−0.5Ve(χ)

− βλmin(Y −1Q2)Ve(χ),

(49)

where Q1 = −(ATY + Y A) and Q2 = −(BTY + Y B). In
detail, these matrices have the following structure Q1 =335 [

(κ+ 4ϑ2)Ks2 + 4ϑ(ωIn −Ke2) N
Ke2 − ϑKs2 − 0.5(κ+ 4ϑ2)In − ωIn 2ϑIn

]
and Q2 =[

(κ+ 4ϑ2)Ks1 −ϑKs1 − 2ϑKe1

−ϑKs1 − 2ϑKe1 2Ke1

]
, where N = Ke2 −

ϑKs2 − 0.5(κ+ 4ϑ2)In − ωIn. According to the structure
of Q1 and Q2, if the parameter’s values are selected as
in (41), then positive eigenvalues are obtained from Q1340

and Q2. In this case, a stable response is provided for the
system (47).

The radially unbounded feature of the Lyapunov func-
tion Ve(χ) can be expressed as

λmin(Y β)‖χ‖2β≤ (χTY χ)
β ≤ λmax(Y β)‖χ‖2β . (50)

From (44), it is possible to write down the following

‖χ‖2β = ‖s(t)µ‖2β+‖d̃(x, t)‖2β

≥ ‖s(t)‖+‖d̃(x, t)‖2β≥ ‖s(t)‖.
(51)

Using (50) and (51), one can write

‖s(t)‖≤ ‖χ‖2β≤
(

Vds(s)

λmin(Y β)

) 1

β
. (52)
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From (52), it follows that

‖s(t)‖−0.5≥
(

Ve(s)

λmin(Y β)

)−1

2β
. (53)

Considering (53), equation (49) can be rewritten as

V̇e(χ) ≤− βλmin(Y −1Q1)

(
Ve(s)

λmin(Y β)

)−1

2β
Ve(χ)

− βλmin(Y −1Q2)Ve(χ)

≤ −βλmin(Y −1Q1)

(λmin(Y β))
−1
2β

Ve(χ)
β−0.5
β

− βλmin(Y −1Q2)Ve(χ).

(54)

Hence, considering Theorem 2, after the finite-time tr,
χ = 02n is achieved. This means s(t) = 0n and d̃(x, t) =
0n. Therefore, the finite-time stability is obtained for345

the sliding variable s(t) and the exact value of d(x, t) is

precisely reconstructed within the time tr (i.e., d̂(x, t) =
d(x, t)).

3.3. Stability analysis in swing phase and impact time

In subsections 3.1, 3.2.1, and 3.2.2, the following gen-
eral form for the derivative of the Lyapunov functions was
obtained

V̇ (t) ≤ −aV (t)− bV c(t), (55)

where a > 0, b > 0, and 0 < c < 1. Assuming that
t ∈ [tk, tk+1), integrating (55) from tk to t yieds

V 1−c(t) ≤V 1−c(tk)e−a(1−c)(t−tk)

− b

a
[1− e−a(1−c)(t−tk)].

(56)

For stability analysis, taking into account the hybrid
nature of the system due to the impact of the swing leg,
at first, the value of the sliding surface variable (19) is
calculated after the impact

s+ = Dα−1e+v +Ks1D
−1(e+v )

ζ
+Ks2D

−1sign(e+v )

= Dα−1δv +Ks1D
−1(δv)

ζ
+Ks2D

−1sign(δv).
(57)

Using Assumption 2 and the equations (20)-(22), the above
expression can be bounded as follows

‖s+‖≤ %0
(
‖Dα−1ev‖+‖D−1evζ‖+‖D−1sign(ev)‖

)
, (58)

where %0=max(γ1,γ2λmax(Ks1),γ3λmax(Ks2)). Calculat-
ing the difference of the common Lyapunov function (55)
between the post- and the pre-impact times gives

V (s(tk
+))− V (s(tk

−)) = (s+
T
Y s+)

β
− (s−

T
Y s−)

β((
λmax(Y )%0

2
)β − (λmin(Y )ξ2

)β)(
‖Dα−1ev‖+‖D−1evζ‖+‖D−1sign(ev)‖

)
≤ (%− 1)V (s(tk

−)),

(59)

where % = (λmax(Y )%0
2

λmin(Y )ξ2 )
β
, and ξ =

min(λmin(Ks1 , λmin(Ks2). Therefore, from (59), it
yields

V (s(tk
+)) ≤ %V (s(tk

−)). (60)

One can design the parameters Y , Ks1 , Ks2 , γ1, γ2, and
γ3 so that % > 1. Combining (56) and (60) yields

V 1−c(t) ≤ %V 1−c(tk
−)e−a(1−c)(t−tk)

− b

a
[1− e−a(1−c)(t−tk)]

≤ %V 1−c(tk−1)e−a(1−c)(t−tk−1)

− b

a
[1− e−a(1−c)(t−tk−1)]− b

a
%[1− e−a(1−c)(t−tk−1)]

≤ ...

≤ %nσV 1−c(t0)e−a(1−c)(t−t0) − b

a
[1− e−a(1−c)(t−tk)]

− ...− b

a
%nσ [1− e−a(1−c)(t−t0)]

≤ %nσV 1−c(t0)e−a(1−c)nσtN−
b

a

%e−a(1−c)tN (e−a(1−c)tN − 1)

%e−a(1−c)tN
[1− %nσe−a(1−c)nσtN ],

(61)

where tN = tk − tk−1 and nσ is the number of switching
times. The bound in (61) can be rewritten as

V 1−c(t) ≤ Ψ%nσe−a(1−c)nσTN − Φ, (62)

where Φ =
b

a

e−a(1−c)tN − 1

%e−a(1−c)tN − 1
and Ψ = V 1−c(t0) − %Φ. If

%e−a(1−c)tN − 1 < 0, then the upper-bound of V (t) will be
positive

V (t) ≤
[
Ψ%nσea(1−c)nσTN − Φ

] 1
1−c

= b2. (63)

This means that the stability of the closed-loop system is350

preserved not only during the swing period of the leg, but
also in presence of the contact. Therefore, using Definition
1, the system is finite-time stable.

3.4. Zero dynamics

In order to make some consideration regarding zero dy-
namics, the state variable x is divided into the controllable
part z1 ∈ Z1 and uncontrollable part z2 ∈ Z2, where Z1

and Z2 are both subsets of Euclidean space. Thus, the
nonlinear hybrid system (18) can be expanded as

ż1 = fz(z1, z2) + gz(z1, z2)u+ d(z, t), t 6= tk

ż2 = hz(z1, z2), t 6= tk

z+1 = δz1(z−1 , z
−
2 ), t = tk

z+2 = δz2(z−1 , z
−
2 ), t = tk

y = z − hd(θ),

(64)

where hd(θ) ∈ Rn is the desired trajectory vector and355

θ ∈ Rnθ is the parameter vector of the desired trajectory.
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The continuous part of the hybrid system (64) is{
ż1 = fz(z1, z2) + gz(z1, z2)u+ d(z, t),

ż2 = hz(z1, z2),
(65)

Definition 2. Consider the system (65) on the state
spaces Z1 and Z2. The zero dynamics of (65) are the
pairs (z2(0), u) for which the solution of (65) satisfies
y = 0. When the controlled states z1 is zeroed, that is,360

fz(0, z2) = 0, so that the dynamics ż2 = hz(0, z2) is invari-
ant, Z2 will be referred to as the zero dynamics manifold
and the reduced system as the zero dynamics.

Definition 3. The periodic orbit Oz is finite-time stable,
if there exists an open neighborhood Ez of Oz, such that365

for ∀εz ∈ Ez, a solution of continuous part of nonlinear
hybrid system (100) , Ω : [0,∞) → (z1, z2) satisfies that
Ω(0) = εz and limt→Tr dist(Ω(t; z1, z2), 0) = 0, in which Tr
is the reaching time of the system state.

Theorem 5. For the system (65), let Oz2 be a finite-time370

stable periodic orbit for the zero dynamics ż2 = hz(0, z2).
If there exist a finite-time stable control Lyapunov function
V (z1, z2) under the control law u(z1, z2), Oz = fo(Oz2) is
a finite-time stable periodic orbit of (65).

Proof. Let V (z1, z2) be a candidate finite-time stable
control Lyapunov function for nonlinear system (65).
From (50), one can write

cl‖z‖2β≤ V (z1, z2) ≤ cu‖z‖2β . (66)

where cl = λmin(Y β) and cu = λmax(Y β). Therefore,
V (z1, z2) has control Lyapunov function property [53]. Be-
sides, the finite-time stability of the states z1 and z2 was
proven in Theorem 4. Hence, this means that the following
relation holds

V̇ (z1, z2) ≤ c0V (z1, z2) + c1V
c2(z1, z2), (67)

where c0 > 0 and c1 > 0, and 0 < c2 < 1. Besides, from
(67), one can have

V (Φ(t, z1(0), z2(0))) ≤ Ω(t, z1(0), z2(0)), (68)

where Φ(t, z1(0), z2(0)) is the maximum solution of (65),
and

Ω(t, z1(0), z2(0)) =

{
A, if 0 ≤ t < Tr(z1(0), z2(0))

0, if t ≥ Tr(z1(0), z2(0))

(69)
where375

A =

[
V 1−c(t0)e−a(1−c)(t−t0)− b

a [1−e−a(1−c)(t−t0)]

] 1
1−c

.

When t > Tr, one has Ω(t, z1(0), z2(0)) = 0. Therefore,
using Definition 3, Theorem 5 is proved.

Remark 5. For the class of hybrid nonlinear dynamics
(64), the centralized controller (31) with adaptive distur-380

bance (40) which is based on finite-time stable control Lya-
punov function makes sure that the dynamics of (65) in the
presence of parameter uncertainties and external distur-
bances is finite-time stable. In addition, in Section 3.3, it
was proven that the manifold of a continuous part can pass385

through the sub-manifolds of switching sections. There-
fore, according to [39], the finite-time periodic orbit of the
hybrid system (64) will be attracted to the hybrid zero dy-
namic surface.

4. Simulation results390

In this section, three case studies, namely, a two-link
walker (n = 2), the RABBIT biped robot with five de-
gree of freedoms (DOFs), and a flat-feet biped robot were
employed to verify the theoretical results proposed in the
previous sections. For both case studies, the designed395

parameters for the position control loop are chosen as
α = 0.75, Kp = 40In, Kd = 5In, and Ki = 15In, while
for the velocity control loop the assigned coefficients are
σ = 0.85, β = 1.75, ζ = 0.5, µ = 0.75, Ks1 = 25In,
Ks2 = 5In, Ks3 = 15In, Ks4 = 10In, and ρ = 0.1.400

The gains of the adaptive disturbance estimator are set
as Ke1 = 12.5In and Ke2 = 7.5In. The lumped unknown
function d(x, t) is composed of two terms: the first term is
related to the parameter uncertainties, d(x), while the sec-
ond term is an external disturbance, d(t). Hence, it yields405

d(x, t) = d(x) + d(t). It is assumed that the uncertainty
function of the two robotic systems is a ten percent devi-
ation of the nominal value of the gradient of the Hamilto-
nian function ∇H(x), i.e. d(x) = ±0.1∇H(x). The upper
and lower saturation levels for two-link walker robot are410

chosen as τmax =
[
70 70

]T
and τmax = −τmin. Also,

the saturation levels for RABBIT biped robot are set as

τmax =
[
50 50 60 60

]T
and τmax = −τmin. The dy-

namics of two biped robots, the proposed controller, and
the estimators were implemented in MATLAB/Simulink415

environment. Differential equations were solved using the
Runge–Kutta algorithm with a sampling time of 10−3 s.

Figure 3: Schematic of a two-link walker on an inclined surface with
slope ϕ.
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Table 1: Two-link walker parameters.

Symbol Description Value
a Length of lower leg 50cm
b Length of upper leg 50cm
m1 Link1 mass 5kg
m2 Link2 mass 5kg
mH Hip mass 10kg
g Gravitational acceleration 9.81m/s2

4.1. Two-link walker

The schematic structure of the employed two-link walker
is shown in Fig. 3. Its geometrical parameters are instead420

given in Table 1. The inclined plane’s angle is equal to
7.5 degrees. The details of the dynamic equations of the
employed two-link biped robot are given in Appendix A.

Figure 4: Cartesian positions of the two-link walker in x and y di-
rections.

The gait planner [18] produces the desired joint angles
for the two-link walker. The center of body and swing leg
trajectories in x and y directions are computed using the
Bezier curve

rp(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (70)

where the coefficients of the Bezier curve, ai ∈ R, with
i = 0, . . . , 5, are calculated according to the boundary425

conditions related to position, velocity, and acceleration
in each walking cycle. It is assumed that the initial ve-
locity and accelerations of body and swing leg are set to
zero, and initial positions of different parts of the robot
are equal to the initial standing data. In an ideal case,430

Figure 5: Stick walking diagram of the two-link biped robot.

Figure 6: Desired, blue line, and measured, red line, joint positions of
the two-link biped robot without considering disturbance estimation
results.

the reference trajectories of the foot tips and body move-
ment are shown in Fig. 4. The variation of the angles q1
and q2 spans between −27.5 deg and 12.5 deg and between
12.5 deg and−27.5 deg, respectively. This depends on the
swing or support phases of the legs. The forward and in-435

verse kinematic calculations of two-link walker robot are
given in Appendix A. In this scenario, the swing time of
each leg is set to one second. The stick walking diagram
of this robot is illustrated in Fig. 5.

To test robustness, the unknown external disturbances440

appear in the dynamic of q̇1 within the time interval
t ∈ [2, 4] s as d1(t) = 25 cos(2t), and in the dynamic of q̇2
within the time interval t ∈ [5, 7] s as d2(t) = 25 sin(2.5t).
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Figure 7: Desired, red line, and measured, blue line, joint velocities of
the two-link biped robot without considering disturbance estimation
results: (a)1st joint, and (b) 2nd joint.

Figure 8: Joint torques of the two-link biped robot without consid-
ering disturbance estimation results.

Figure 9: Desired, blue line, and measured, red line, joint angles of
the two-link biped robot: (a)1st joint, and (b) 2nd joint.

Figure 10: Desired, red line, and measured, blue line, joint velocities
of the two-link biped robot.

In this case study, in order to estimate such external dis-
turbance, the fractional calculus-based estimator is used.445
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Figure 11: Phase portrait of q1 − q̇1 for the two-link walker: the red
line is the desired phase-space, while the blue line is the measured
phase-space. Marker ” ∗ ” indicates initial configuration at t = 0.25

Figure 12: Position tracking errors: the black line is for joint 1, and
black dashed line is for joint 2.

Here, at first, the situation where the external distur-
bances’ estimation results are not employed within the
control structure is addressed. The effects of such exter-
nal disturbances on the tracking performance of the ve-
locity loop are shown from Fig. 6 to Fig. 8. In these fig-450

ures, the external disturbances are applied within the two
dashed lines’ time interval. It can be observed that the
external disturbance affects the behavior of measured po-
sition, velocity, and torque signals. The behavior change
of the signals is most evident in the measured velocity455

and torque signals in Figs. 7 and 8. Therefore, the track-
ing performance of the system decreases and needs some
modifications in the control signal. Fig. 9 and Fig. 10 show
the profiles of the desired and measured angular positions
and angular velocities of the joints after adding the esti-460

mation results in the control signal, respectively. It can
be observed that, now, the measured angles track the de-
sired trajectories precisely in a finite-time when external
disturbance and parameter uncertainties affect the robot
dynamics.465

The phase portrait of qi − q̇i, i = 1, 2 is plotted in
Fig. 11. It can be seen that, due to the collision of the
robot leg with the ground, the dynamic behavior of the

Figure 13: Control efforts of two link walker: (a) τ1, and (b) τ2.

Figure 14: Schematic of the five link RABBIT biped robot.

system changes. However, the system response follows the
desired phase portrait in a short time. Fig. 12 shows the470

time response of the angular position tracking error. It
can be observed that the tracking errors decay to zero in
a short time. Hence, the control algorithm has a fast con-
vergence rate and confirms that the system is finite-time
stable. Control efforts τ1 and τ2 are plotted in Fig. 13.475

At the impact times, sudden jumps appear in the control
signals. The reason is that, after each impact time, the
impulse effects change the values of the angular velocities
sharply. However, after a short time, the impulse effects
are not observed in the control signals anymore, and the480

signals demonstrate continuous behaviors.
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Table 2: RABBIT biped robot parameters.

Symbol Description Value
LT Torso length 40cm
L Thigh (shank) length 40cm
mT Hip mass 12kg
mt Thigh mass 6.8kg
ms Shank mass 3.2kg
IT Hip inertia moment 1.33kgm2

It Thigh inertia moment 0.47kgm2

Is Shank inertia moment 0.20kgm2

Ia Motor rotate inertia 0.83kgm2

4.2. RABBIT biped robot

The considered RABBIT biped robot is a planar me-
chanical system with five DOFs as llustrated in Fig. 14.
Its structure parameters are provided in Table 2. For nu-485

merical simulation, the same dynamic model of the biped
robot in [54] has been employed. The mathematical re-
lationships describing the changes in the angular position
and angular velocity of the joints at the impact time are
given in Appendix B.490

Figure 15: Cartesian positions of the RABBIT biped robot in x and
y directions.

The initial standing positions of the hip, left leg, and
right leg are (0.1, 0.6) m, (0, 0) m, and (0, 0.2) m, respec-
tively. For this biped robot, at first, the Cartesian posi-
tions of the hip and tip points of the legs are designed. It
is assumed that, the hip and the tips of the legs in x direc-495

tions are computed using (70). Also, along the x direction,
the robot’s hip moves with a constant height and the tips

Figure 16: Stick walking diagram of the RABBIT biped robot.

of the legs follow the paths generated with sinusoidal func-
tions as shown in Fig. 15. The swing time of each leg is
set to two seconds. Afterwords, the joint positions are cal-500

culated using inverse kinematic calculations. The forward
and inverse kinematic calculations of RABBIT biped robot
are given in Appendix B. The stick walking diagram of the
RABBIT biped robot is displayed in Fig. 16.

To test robustness, it is assumed that the external dis-505

turbance affects only the dynamics of q̇1 and q̇4 as d1(t) =
30 cos(1.5t)) for t ∈ [2, 5] s and d4(t) = 25 sin(1.5t)) for
t ∈ [6, 9] s.

Figure 17: Desired, red line, and measured, blue line, joint veloc-
ities of the RABBIT biped robot without considering disturbance
estimation results: (a)1st joint, and (b) 4th joint.
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Figure 18: Desired, blue line, and measured, red line, joint positions
of the RABBIT biped robot: (a) 1st joint, (b) 2nd joint, (c) 3rd

joint, and (d) 4th joint.

At first, to evaluate the robustness of the proposed two-
loop control scheme, only the equivalent control term, τeq,510

is applied to the RABBIT robot dynamics. The velocity
tracking results are depicted in Fig. 17. From such a fig-
ure, it is evident that the velocity tracking performance
falls over the time that the external disturbance affects
the dynamics of the RABBIT biped robot. In such condi-515

tions, the compensation of the disturbance effect is indeed
demanded.

Here, the adaptive disturbance estimator is instead used

Figure 19: Phase portraits of the desired, red line, and measured,
blue line, states of the RABBIT biped robot. Markers ” ∗ ” indicate
initial configuration at t = 0.25

Figure 20: Joint position tracking errors. exi , i = 1, 2, 3, 4, is the
position tracking error of joint i.

to reconstruct the disturbance. The results in controlling
the RABBIT biped robot under the proposed methodology520

are displayed from Fig. 18 to Fig. 21. In detail, the time
responses of the robot states and the desired joint trajecto-
ries are plotted in Fig. 18. The results are representative of
the good convergence of the measured joint position states
to their desired trajectories. Fig. 19 illustrates the phase525

diagrams between the states qi and q̇i, i = 1, 3. It also
shows that the system responses are adapted to impact
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Figure 21: Control efforts of RABBIT biped robot: (a) τ1, (b) τ2,
(c) τ3, and (d) τ4.

conditions and follow the desired phase portraits. Since
the states q2 and q4 behave similarly to q1 and q3, their
phase spaces are not displayed. Since the gait planner pro-530

duces stable motion for the RABBIT biped robot, and the
robot goes on stable limit-cycles, the dynamic stability of
the robot is preserved [14]. Fig. 20 shows the behavior of
the position tracking errors under fractional-order sliding
mode controller. The position tracking errors tend to zero535

as quickly as expected. Fig. 21 presents the applied control
signals τ1 to τ4. It can be observed that, due to impacts,

spike-like signals appear, but they are repelled by the con-
trol system quickly. These results verify the theoretical
prediction and validate the effectiveness of the proposed540

control scheme.
For better evaluation the proposed estimators’ perfor-

mance, the amplitude of the external disturbances is also
increased 1.5 times. The position tracking results obtained
in the time interval [0.5, 10] s are compared in terms of the545

root-mean-square error (RMSE). The RMSE obtained by
using the adaptive estimator is 0.0106 and 0.0139 for the
1st and the 4th joint, respectively. The RMSEs obtained
applying the fractional calculus-based estimator are 0.0461
and 0.0395 for the 1st and the 4th joint, respectively. Since550

the adaptive estimator uses the robot dynamics, better
performance is achieved than the fractional calculus-based
estimator.

4.3. Pushing test on a flat-feet biped robot

In this scenario, a flat-feet biped robot in standing po-555

sition is used as a case study as shown in Fig. 22. The
geometric characteristics of this robot are the same as the
RABBIT biped robot and the mass of each foot is 1kg.
An external force, with a magnitude of 50 N, pushes the
robot body along the x-direction during the time interval560

[3, 4] s. The desired and measured trajectories of the body
along the x-direction, as well as the joint trajectories of
the right leg depicted in Fig. 23 and Fig. 24(a)-(b). In
these figures, the external disturbance is applied within
the two dashed lines’ time intervals. The adaptive distur-565

bance estimator was used in the proposed two-loop control
system. It can be seen that the robust control system dis-
pels the undesired effects of external force, and measured
trajectories converge to the desired trajectories in a finite
time. Therefore, the biped robot maintains its balance sta-570

tus with great precision. The robustness of the proposed
control system and performance comparison, the robust
sliding-mode-based control technique reported in [55] for
control of biped robots, is employed in this experiment to
test the robustness of the proposed control system further.575

The time responses of applying sliding mode control are
also shown in Fig. 23 and Fig. 24(a)-(b). The chattering
phenomenon is observed in the state responses, and the
control system cannot dispel well the effects of external
force. Therefore, our control scheme has suitable robust-580

ness property and provides smooth tracking performance
with higher tracking accuracy.

5. Conclusion

The problem of designing a finite-time robust controller
for the hybrid dynamics of a biped robotic system sub-585

ject to impact, parameter uncertainty, and external dis-
turbance was investigated. Considering the fractional slid-
ing surface’s excellent convergence properties, a fractional-
order PID position controller was used in the position loop.
A fractional-order sliding mode controller was instead ap-590

plied in the velocity loop. Two disturbance reconstruction
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Figure 22: Pushing test of a biped robot in standing position. The
yellow-orange arrow indicates that external force inserted to the torso
of the robot in x-direction.

Figure 23: Body position in x-direction during pushing test. De-
sired position (green line), measured position with sliding-mode con-
trol (red line), and measured position with proposed control method
(blue line).

techniques were proposed to deal with unknown uncer-
tainty and disturbance function. The former, using frac-
tional calculus properties, can reconstruct the unknown
lumped disturbance. The latter is an adaptive distur-595

bance estimator. The stability of the closed-loop hybrid
port-Hamiltonian system was proved using Lyapunov the-
ory. The achieved results obtained using three types of
biped robots bolster the goodness of the proposed con-
trol methodology. Besides, the proposed finite-time con-600

trol strategies foresee an effective approach to solve the
finite-time control problems for general switched nonlin-
ear port-Hamiltonian systems.

Future plans want to extend this work to the switched
port-Hamiltonian systems and only for the case that the605

system’s position variables are measurable. It will also be
assumed that there is a time-delay between the control
action and the controlled system’s switching time. That
is, the asynchronous switching controller design problem
for port-Hamiltonian systems will be investigated. To fur-610

ther prove the proposed methodology in practice, the de-

Figure 24: Angular position of the right leg: (a) q1, and (b) q3. De-
sired position (green line), measured position with sliding-mode con-
trol (red line), and measured position with proposed control method
(blue line).

signed controller can be implemented to the real biped
robots with several degrees of freedom under different
walking/running conditions.

Appendix A615

For forward kinematic calculations, considering Fig. 3
and having hip position as xH = (xH , yH), q1, and q2, the
position of right leg, pR = (xR, yR), and left leg, pL =
(xL, yL), can be calculated as:

pR = Rϕ

(
pH +

[
(a+ b) sin(q1)
−(a+ b) cos(q1)

])
620

pL = Rϕ

(
pH −

[
(a+ b) sin(−q2)
(a+ b) cos(−q2)

])
where Rϕ =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

For inverse kinematic calculations, we need to have pH ,
pR, and pL. Considering forward kinematic calculations,
q1 and q2 can be obtained as:625

q1 = cos−1

(
(a+ b)−1

(
sin(ϕ)xR − cos(ϕ)yR + yH

))

q2 = − cos−1

(
(a+ b)−1

(
sin(ϕ)xL− cos(ϕ)yL + yH

))
The details of two link walker dynamic matrices are as

follows [54]:
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M =

[
M11 M12

M21 M22

]
630

M11 = (mH +m2)l2 +m1b
2

M12 = −m2la cos(q1 − q2)
M21 = −m2la cos(q1 − q2)
M22 = m2a

2

C =

[
C11 C12

C21 C22

]
635

C11 = 0
C12 = −m2laq̇2 sin(q1 − q2)
C21 = m2laq̇1 sin(q1 − q2)
C22 = 0

G =

[
−((mH +m2)l +m1b)g sin(q1)

m2ag sin(q2)

]
640

where l = a+ b.
The renaming and resetting matrices ∆n and ∆s have

the following forms:

∆n =

[
0 1
1 0

]
∆s = Q+

−1Q− ,645

where:

Q+ =

[
Q+11 Q+12

Q+21 Q+22

]
Q+11 = m1a

2 −m1la cos(q1 − q2))
Q+12 = −m1la cos(q1 − q2)) + (mH +m1)l2 +m2b

2

Q+21 = m1a
2

650

Q+22 = −m1la cos(q1 − q2))

Q− =

[
Q−11 Q−12

Q−21 Q−22

]
Q−11 = (mH l

2 + (m1 +m2)lb) cos(q1 − q2))
Q−12 = −m2ab
Q−21 = −m1ab655

Q−22 = 0
From Fig. 4, the impact time of the swing leg can be

recognized from the following equation:
P (q) = P1(q) + Pφ(q)− P2(q) = 0
where:660

P1(q) = l cos(−q1))
P2(q) = l cos(q2))
Pφ(q) = L tan(φ), L = l sin(−q1)) + l sin(q2))

Appendix B

For forward kinematic calculations, considering Fig. 14,665

and having hip position as pH = (xH , yH), q1, q2, q3, q4,
and q5, the position of right leg, pR = (xR, yR), and left
leg, pL = (xL, yL), can be calculated as:

xR = xH + L sin(
3π

4
− q1) + L cos(

3π

4
− q1 − q3)

yR = yH + L cos(
3π

4
− q1) + L sin(

3π

4
− q1 − q3)670

xL = xH + L sin(
3π

4
− q2) + L cos(

3π

4
− q1 − q4)

yL = yH + L cos(
3π

4
− q2) + L sin(

3π

4
− q1 − q4)

For inverse kinematic calculations, we need to have pH ,
pR, and pL. Then, from Fig. 14 and previous forward
kinematic calculations, q1 to q4 can be obtained as:675

q1 = π+arctan

(
d− c0
y

)
−arccos

(
d2 − c20 + y2

2L
√
d2 − c20 + y2

)
q2 = π − arctan

(
c0
y

)
− arccos

(
c20 + y2

2L
√
c20 + y2

)
q3 = arccos

(
− 2L2 − d2 + c20 − y2

2L2

)
q4 = arccos

(
− 2L2 − c20 − y2

2L2

)
where d = xR−yR. For

the RABBIT biped robot, ∆n has the following structure:680

∆n =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1


And, the relation between after and before joint veloci-

ties, ∆s, is calculated by the following equation [54]:

∆s = I −M−1JT [JM−1JT ]
−1
J

where J is the Jacobian matrix of the swing leg with685

respect to the (x, y) position in Fig. 14.
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