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Abstract

This paper investigates the connection between non-prehensile manipulation, specifically juggling, and legged locomotion, focusing
on biped robots. In this direction, the hybrid nature of juggler robot dynamics and biped robots, the zero moment point stability,
and the non-prehensile dynamic grasping conditions are provided and analysed. The similarities between juggling actions and
bipedal robot locomotion are discussed. The descriptive and mathematical analysis demonstrates many similitudes between juggler
systems with cubic objects and flat-feet biped robots in throwing, catching, and stabilisation phases, and between juggler actions
with impact and point-feet legged robots in their switching (hybrid) dynamic behaviours. Finally, a common control framework
based on the zero dynamic concept and integral sliding mode approach is proposed, and it applies to both classes of non-prehensile
juggler systems and biped robots. To test the performance of the devised control system, a three-degrees-of-freedom juggler robot
and a two-link walker are selected as case studies, whose simulation results demonstrate the effectiveness and feasibility of the

proposed unified control framework for both systems.

Keywords: Biped robots, Non-prehensile manipulation, Juggling tasks, Hybrid dynamics, ZMP stability, Dynamic grasping

conditions.

1. Introduction

Bipedal locomotion and dynamic object manipulation, in-
cluding non-prehensile manipulation, are pivotal and funda-
mental subjects in robotics (Ryu and Lynch| (2018); [Khadiv
et al.| (2020)). Extracting the connections between these two
topics may lead to directly adopting ideas and methods devel-
oped in the manipulation area to solve problems in the locomo-
tion domain and vice versa (Akbarimajd et al.| (2011)). These
connections could be very beneficial in enhancing motion plan-
ning frameworks, control strategies, stability criteria, and me-
chanical structure in both domains.

A mobile robot is capable of autonomous locomotion around
the environment, and it can be used for large workspace applica-
tions. However, the environment may be filled with obstacles or
other moving robots and/or humans. Then, the robot must plan
collision-free paths unless some cooperation with other robots
and/or humans is desired. The use of legged robots over stan-
dard wheeled robots improves mobility over rough and uneven
terrains: legs isolate the body from terrain irregularities and
avoid undesirable footholds. Walking can be defined as a lo-
comotion gait of a biped where the feet are lifted alternatively
while at least one foot is always on the ground. The pioneer-
ing works in the field of legged robotics were achieved around
1970. This means that walking is younger than other robotic
branches. [Kajita and Espiau| (2008) and Wieber et al.| (2016)
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presented a brief history of legged robotics. Many approaches
are proposed in the literature to deal with legged robotics prob-
lems (Morlando et al., 2021} |[Farid et al.l 2021; | Yeganegi et al.,
2022 |[Farid and Ehsani-Seresht, 2021} [La Hera et al., [2013).
From a mechanical point of view, walking is when periodic
internal shape changes of the mechanical structure, combined
with reaction forces from the ground, resulting in an overall
displacement. Suppose through active control of a fully actu-
ated robot it is possible to ensure that the centre of mass (CoM)
is always located above the foot area. In that case, the robot can
achieve stable walking if movements are languid. This is called
static walking, and the control problem is reduced to traditional
joint tracking control of a rigid mechanism. The concept can be
extended to the dynamic analysis of the so-called zero moment
point (ZMP) in which the centre of pressure, resulting from
gravitation and inertial effects, is required to remain strictly
inside the support polygon (Duindam and Stramigioli, 2009
Farid et al., |2018). No matter what control technique is used,
the behaviour of legged robots remains challenging to under-
stand due to the highly nonlinear coupled, and generally un-
stable, dynamics together with the hybrid aspects of switching
between the feet on the ground (switching between contact and
no contact).

Multi-fingered object manipulation has been well formalised
for many decades as evident from the works by Mason and Sal-
isbury| (1985)), Murray et al.| (1994), Bicchi and Kumar| (2000),
and |Okamura et al.|(2000). An object is manipulated in a non-
prehensile way when it is not directly caged between the fin-
gertips or the hands palm, and the force closure constraint does
not hold (Ruggiero et al., [2018a)). The grasp is then performed
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by exploiting only unilateral constraints, allowing the object to
roll, slide, and break the contact with the robot manipulating
it. From a robotic point of view, most non-prehensile manip-
ulation systems are underactuated, raising controllability chal-
lenges. However, dynamic non-prehensile manipulation ben-
efits several advantages such as the increase of available robot
actions, bigger operative workspaces, and enhanced dexterity in
dynamic tasks (Ruggiero et al.,|2018b)). Pushing objects, fold-
ing clothes, bringing a wine glass on a tray, cooking in a pan,
and so on are all examples of non-prehensile manipulation ac-
tions in everyday life. Non-prehensile manipulation can also be
endorsed as dynamic when the dynamics of both the object and
the robot are essential to carry out the task successfully.

Johnson et al.| (2012) found the duality between a multi-
fingered grasp and a multi-legged stance to establish the cor-
rectness of the controller by a quasi-static analysis borrowed
from the robot manipulation literature. Therefore, under cer-
tain conditions, it is possible to assume that locomotion is a
kind of manipulation. Exploiting this concept, Beigzadeh et al.
(2008) found out a unified approach to multi-contact planning
and control at an abstract level. For static walking, it is possi-
ble to imagine that the biped robot instantaneously manipulates
the planet earth, as well as a sphere (the earth) can be manip-
ulated by two fingertips (the feet). Such an example is not,
of course, what happens: to any reasonable level of precision,
the robot is neither moving the world nor the world is moving
the robot. Nevertheless, the problems (walking and manipula-
tion) are similar enough that matching as closely as possible the
modelling decisions (emerging from this very successful and
mature body of work) facilitates the reuse of several valuable
ideas and results (Johnson and Koditschekl, |2013)). Hence, sim-
ilarities between walking and manipulation have led to several
control techniques trying to optimise the contact forces between
the legs and the ground as a quasi-static manipulation problem,
well known in the robotics literature.

However, static walking is not well suited for fast and ef-
ficient walking. The idea is to find and establish a different
connection: multi-contact dynamic and energy-efficient walk-
ing gaits must be related to non-prehensile manipulation. In-
deed, agile and dexterous walking and non-prehensile manipu-
lation share a common hybrid nature, while dynamics is crucial
in both aspects. Examining this connection might bring new
insights into the research community.

The following section will further expand the analysis of re-
lated work in bipedal locomotion and non-prehensile manip-
ulation, focusing on the preliminary studies investigating the
connection between the two subjects. The following section
also provides the contributions of this paper. An introduction
to non-prehensile manipulation, with other examples, is given
in Section 3] This last also presents the dynamic equations of
some robotic systems with impacts. Section[dincludes subjects
related to the biped robots with both shaped and point feet. In
Section[5] dynamical similarities between juggling and locomo-
tion from different aspects are investigated. Designing a com-
mon control system framework for Lagrangian systems under
sequences of impacts is presented in Section [ Section [5]con-
cludes this study.

2. Related work and contributions

2.1. Non-prehensile manipulation

Ruggiero et al.| (2018b)) figured out that the conventional
way to cope with a non-prehensile dynamic manipulation task
is to split it into simpler subtasks, usually referred to as non-
prehensile manipulation primitives. Therefore, the object is
manipulated by pushing, pivoting, sliding, juggling, batting,
rolling, etc. The non-prehensile manipulation approach has
some advantages, such as transferring objects out of the robots
workspace, eliminating the need for compliance control and
finger coordination in establishing a stable grasp, reducing
task execution time, and improving dexterity in dynamic tasks.
Some non-prehensile manipulation tasks exhibit non-smooth
dynamics (Brogliato (2016))). The robot manipulates the object
through a set of contacts. When one or more of the contacts
changes its mode, say from sticking contact to slipping or from
slipping to no-contact, the dynamics of the system changes in a
non-smooth manner. Some of these switches can be controlled,
as when a finger pushing an object moves away and re-contacts
it at another location or when an impact is used for control.
Other switches are uncontrolled, as when the friction force be-
tween an object and a surface it is sliding on changes due to
indeterminacy in the support force distribution. This kind of
uncertainty is inherent in many manipulation systems. Finally,
both object geometry and robot geometry are essential. Since
forces are applied to the object through contact, the set of avail-
able contacts afforded by the object’s geometry is critical in
determining the controllability of the object and in designing
a control law. Brogliato| (2016)) provided the entire discussion
about non-smooth mechanics, including models, dynamics, and
control.

Therefore, there exist three crucial control problems in non-
prehensile manipulation systems.

1. Defining sensible and testable notions of controllability.
The state-space of a manipulation system naturally decom-
poses into a robot state space and an object state space,
and we are typically interested in the local and global con-
trollability properties of the object. Some progress has
been made for stratified systems by [Goodwine and Bur-
dick]| (2000).

2. Trajectory generation. Given the non-smooth dynamics of
some manipulation systems, the problem is to find a set of
controls yielding a feasible trajectory between the initial
state and the goal state (Akella et al.|(2000)).

3. Stabilizing a planned trajectory or equilibrium. The prob-
lem of positioning and orienting an object is to find a con-
trol law to stabilize an equilibrium.

Among the non-prehensile manipulation primitives, we focus
on the batting and juggling ones. Bat-juggling is the process of
manipulating an object, usually a ball, by a series of impacts
with moving the object in ballistic flight between two rockets.
A typical goal of a juggling system is to stabilize the desired



limit cycle. |Brogliato and Rio| (2000) defined the term “con-
trollable through the impacts” to describe juggling controllabil-
ity of an object. |Spong| (2001) considered the controllability
of a batted air hockey puck instead. Control laws for juggling
planar pucks and balls in space, and experimental implemen-
tations, are described by [Buhler et al.| (1994) and |[Lynch et al.
(2001). Brogliato and Rio| (2000)) outlined a general frame-
work for studying juggling systems. |Serra et al.| (2017)) pro-
posed a nonlinear least squares approach to deal with dual-hand
robotic ball juggling. Most of the juggling systems are classic
examples of non-smooth dynamics. Frameworks for modeling
and analysis of such systems have been proposed in the liter-
ature, including systems with unilateral constraints (Brogliato
(2016); Brogliato and Rio| (2000)), measure differential inclu-
sions (Moreau| (1988)), systems with perfect elastic impacts
(Guckenheimer and Holmes| (1983)); [Luck and Mehtal (1983));
Sanfelice et al.|(2007)), and hybrid systems (van der Schaft and
Schumacher (2000); Goebel et al. (2009)).

2.2. Bipedal locomotion

There has long been an interest in understanding bipedal lo-
comotion and walking control, not only from the desire to build
biped robots to perform tasks that are dangerous or degrading
to humans (Johnson et al.| (2017)), but also to serve as service
robots (Zhu et al.| (2021)), help rehabilitate people (Zhao et al.
(2017)), and other aims (Chen et al.| (2021)). Common ap-
proaches to locomotion control include:

o the use of passive walking as a starting point for the design
of active walkers;

e the use of ZMP control;

o the use of a fixed control architecture and the application
parameter search to find the parameters that yield success-
ful walking gaits;

o the development of feedback laws based upon insights into
balance and locomotion.

Walking humanoids are unstable and underactuated, and
their control involves high-dimensional states and high-
dimensional actions. Locomotion involves joint limit con-
straints, torque-limit constraints, contact constraints, and con-
tact impacts. Also, locomotion may have several contradictory
goals, including robustness and energy usage. Therefore, per-
forming biped locomotion of humanoid robots is a challenging
task. Simplified models are instrumental in producing natural
motions at different walking speeds, and resembling human lo-
comotion. Xie et al.| (2021)) proposed a linear inverted pendu-
lum model (LIPM) to generate the walking reference trajectory
during the single support phase. They also adopted a linear pen-
dulum model (LPM) to describe the motion in the double sup-
port phase. [Bae and Oh|(2018)) designed a biped robot state es-
timation framework based on the compliant inverted pendulum
model (IPM) and a dual-loop Kalman filter estimator. Using
a cart-table model, Joe and Oh| (2018)) proposed a balance re-
covery algorithm based on model predictive control. Although

simpler models are more practical, most of them do not con-
sider the nonlinear dynamics and impulsive effects in the con-
troller design and the stabilization of periodic orbits.

Several authors adopted hybrid models to the biped robots
to consider the impulsive effects. An energy shaping control
method has been proposed by |Arpenti et al.|(2021), which guar-
antees that the total energy of the planar biped robots converges
smoothly to the target limit cycle. Ames et al.|(2014)) applied an
input-output feedback linearization technique, with exponen-
tially stabilizing control Lyapunov functions, to the particular
class of hybrid models with impulse effects. Designing stable
walking gaits for biped robots over variable-inclined terrain us-
ing hybrid zero dynamics control framework to achieve hybrid
invariant was instead presented by Horn et al.|(2020).

Although many advanced results on biped walking have been
reported in the literature, challenging issues, such as robust and
optimal motion planning for agile locomotion, rigid movement
and anti-disturbance ability, and control of the under-actuated
robots represented by a class of hybrid systems when the in-
teraction impacts affect the walking stability, are still present
and need to be discussed. All these observations motivate the
current study.

2.3. Connection between non-prehensile manipulation and
legged locomotion

Literature review reveals that many researchers have already
started investigating the notion of correspondences between
non-prehensile object manipulation and legged robots but as
separate topics (Kant and Mukherjeel [2022; Nguyen and Olaru,
2013; Kant and Mukherjeel [2020). Besides, Zhang et al.|(2020))
wrote an interesting work about the use of dynamic forces for
motion generation.

Some studies focused, instead, on the analogies between
non-prehensile manipulation and locomotion at the same time.
Buhler et al.| (1990) demonstrated that their juggler and Raib-
erts hopper settle down to a characteristic steady-state pattern
because that pattern is an attracting periodic orbit of the closed-
loop robot-environment dynamics. [Klavins and Koditschek
(2001)) developed a coupled hybrid oscillatory method: a pad-
dle juggling system and Raiberts hopping robot were chosen
as two case studies. |Beigzadeh et al.| (2008) showed that si-
multaneous increasing the mass and dimensions of the spheri-
cal object manipulated by two arms and decreasing the earths
mass and diameter leads to the unification of dynamic object
manipulation and dynamic locomotion. |Ramirez-Alpizar et al.
(2012)) proposed a dynamic non-prehensile manipulation strat-
egy to rotate a thin deformable object on a rigid two degrees
of freedom plate. They explored that the objects rotational be-
haviour changes with respect to the plates motion frequency,
similar to a biped transitioning from sliding to walking to a run-
ning gait. Examining the connections between juggler systems
and legged robots in different manipulation/locomotion phases
and transition between these two tasks under other conditions
needs profound research studies.

Hybrid systems with parameters or state jumps are success-
fully employed in representing the intricate and latent features
of real mechanical systems in engineering applications where



short pulse-like signals mediate the interactions (Asano} 2015
Turki et al., 2020; |Gritli, [2019; Michel et al.l 2005; Michel,
1999). For a ball-playing juggling robotic system, |[Farid and
Ruggiero|(202 1) showed that the juggling system could be char-
acterised by a hybrid/switching dynamics. In such a system,
ball motion is controlled by the impacts inserted by the jug-
gler to the ball repetitively. [Nguyen and Olaru| (2013)) investi-
gated hybrid modelling and constrained control of another kind
of juggling system. On the other hand, a nonlinear hybrid sys-
tem describes the dynamic behaviour of legged robots having
multi-phase properties given by the swing and stance phases of
the legs (Hamed and Ames|(2020);/Ma et al.[(2019); Martin and
Gregg (2017)). The impulse effect is caused by the legs hitting
the walking surface and environmental constraints.

Stability analysis and control of hybrid systems have re-
ceived the attention of many researchers in the last decade
(Kvlem et al.| (2021); [Zeng et al.| (2021); [Zhang et al.[ (2021)).
Kamidi et al.| (2021) developed a distributed control algo-
rithm based on decomposition, hybrid zero dynamics (HZD),
and a scalable optimization for hybrid models of collabora-
tive human-robot locomotion. |Arcos-Legarda et al.|(2019)) pre-
sented a robust compound control strategy to produce a stable
gait in bipedal robots with hybrid dynamics under random per-
turbations.

2.4. Contributions

The general discussion in our research work is that, at a
mathematical level, the dynamic equations of non-prehensile
juggling systems and legged robots can be represented by La-
grangian systems with hybrid dynamics. The word “hybrid” is
here employed as by (D1 Bernardo et al., [2008), where a set
of ordinary differential equations plus a set of reset maps is re-
ferred to as a piecewise-smooth hybrid system, here shortened
for the rest of the paper as hybrid system. We can push the
control technologies from the non-prehensile manipulation do-
main to the locomotion field and vice versa, where well-known
controllers can be reused to solve the task and see the perfor-
mance of the designed solution. Consequently, locomotion and
non-prehensile juggling manipulation will be tackled as a uni-
fied problem, allowing simultaneous and coordinated execution
of both tasks.

The contribution points of this research study are given in the
following.

i) Identify a set of common characteristics between different
phases of flat-feet biped robots and non-prehensile jug-
gling systems such as throwing, free-flight-catching, and
balancing are investigated.

ii) It is proven that the stability conditions in the support
phase of a flat-feet biped robot have a similar structure of
dynamic grasp conditions in the carrying phase of a jug-
gling system.

iii) A unified optimisation problem is formulated for the
throwing phase of the biped robot locomotion and dy-
namic object manipulation, where the output of the algo-

rithm is the optimal trajectory of biped robot’s CoM and
the manipulated object’s CoM.

iv) The connections between point-foot biped robots and jug-
gling with impacts are verified.

v) A control system using zero dynamic-based integral slid-
ing mode controller is designed for the general class of
juggler/biped robots with hybrid Lagrangian dynamics.

vi) Stability analysis based on Lyapunov theory ensures that
the controlled nonlinear hybrid robotic system is finite-
time stable under the sequences of impacts.

3. Non-prehensile manipulation

In daily human routine, some activities require strength, skill,
thinking, assessment, and dexterity to be done correctly. In
some tasks, people manipulate objects in interesting ways that
do not involve grasping. Pushing a car to start it is a tan-
gible and understandable example of moving objects without
grasping. To move the vehicle, a resultant force with an appro-
priate amplitude that causes the car to move must be applied
in the direction of the surface on which the vehicle is located
(Fig.[Ifa)). In the pizza-making process, for instance, dynamic
non-prehensile manipulation consists of rotating/translating a
rigid body (plate) and a deformable body (pizza dough with
other ingredients) and also sliding manipulation, in which dy-
namic effects generate the objects deformation (Fig. [T[b)). In
a basketball game, the ball is thrown by the attacking player
towards the goal, which the target is the basket of the oppos-
ing team. The vision, centralisation, angle of throwing, and the
power of arms of the attacking player play essential roles in
reaching the ball to the basket (Fig. [T[c)). Continuous manipu-
lation of a ball rolling around a butterfly device needs concen-
tration, visual feedback, and high-speed action. Although its
mechanism may look likes simple, in practice doing so is chal-
lenging for humans (Fig. [T[d)). Another non-prehensile action
in which the object moves a long distance without grasping is
batting, like in the baseball game. Good pre-pitch rhythms of
the body, arms, and legs of the player ensure success in the
game (Fig. [T[e)). Juggling is a physical skill performed by
a juggler involving manipulating objects for recreation, enter-
tainment, art, or sport. The most recognizable form of juggling
is toss juggling (Fig. [[[f)). Juggling can be the manipulation
of one or many objects simultaneously, most often using one or
two hands but also possible with feet. Jugglers often refer to the
objects they juggle as props. The most common props are balls,
clubs, or rings. Some jugglers use more dramatic objects such
as knives, fire torches, or chainsaws. The term juggling can also
commonly refer to other prop-based manipulation skills, such
as diabolo, plate spinning, devil sticks, poi, cigar boxes, contact
juggling, hooping, yo-yo, and hat manipulation. All of the in-
troduced actions are examples of non-prehensile manipulation,
which means manipulation without grasping.

So far, many robotic systems have been built and trained to
perform tasks that require high skill and power (such as non-
prehensile tasks). As shown in Fig. [J(a), TORO humanoid
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Figure 1: Non-prehensile actions by humans: (a) pushing a car (courtesy of

IMG-1), (b) rotational/translation/sliding (courtesy of IMG-2), (c) throwing a
ball (courtesy of IMG-3), (d) ball rolling around a butterfly device (courtesy of

IMG-4), (e) batting (courtesy of IMG-5), and (f) juggling (courtesy of IMG-6).

robot is pushing two boxes to the forward position on the ta-
ble in a non-prehensile way. Balancing is a critical feature for
a robot interacting with an unstructured environment. There,
the balancing control should account for unknown perturbation
forces that might destabilise the robot when performing the in-
tended tasks (Abi-Farraj et al] (2019)). The RoDyMan project
was successfully developed to mimic human behaviour for non-
prehensile dynamic manipulation of rigid and deformable ob-
jects (Ruggiero et al|| (2018b)) (Fig.2[b)). Similar to the throw-
ing actions of humans, Woodruff and Lynch| (2017) developed
a robotic system performing the non-prehensile throwing task
(see Fig. 2Jc)). A type of butterfly robot was implemented by
[Surov et al.| (2015) for developing systematic techniques for
non-prehensile rolling manipulation. Motion planning and sta-
bilization of the robotic platform are considered as a challeng-
ing benchmark (Fig.[2(d)). Playing pingpong is one of the most
challenging non-prehensile tasks (Fig. 2[e)). To perform this
task, several capabilities are required for a robot system, such
as smart sensing, object tracking, trajectory prediction, and mo-
tion planning (2013)). A dual-hand robotic system
that can perform a repetitive batting of a ball between two pad-
dles/hands in a non-prehensile way was implemented by
(Fig. [2(f)). This robotic platform also requires the

same capabilities mentioned for ping-pong player robots.

In this research, we pay attention to the juggling/batting
tasks. Our primary focus will be analysing the dynamic be-
haviour of robotic systems subjected to the impacts. At first,
two famous percussion systems under impacts, normal and in-
verse pendulum systems, are introduced, despite they can not
be classified as non-prehensile manipulation primitives. Then,
in the following section, the dynamic behaviour of a juggler
system is analysed.

Figure 2: Non-prehensile actions by robotic systems: (a) pushing two boxes
by TORO humanoid robot (courtesy of [Abi-Farraj et al| (2019)), (b) RoDyMan
humanoid robot (courtesy of |Ruggiero et al.| (2018b)), (c) throwing an object
by a robotic manipulator (courtesy of[Woodruft and Lynch|(2017)), (d) butterfly
robot (courtesy of[Surov et al(2015)), (e) ping-pong playing robot (courtesy of
(2013)), and (f) ball-juggling robotic system (courtesy of
(2017)).

3.1. Dynamic equations of inverse/normal pendulums under
impacts

The equations of motion for the impacting pendulums which

are shown in Fig. [B(a)-(b) are as follows (Moore and Shaw|

(1990))
{mlzé + b0 + mgl sin(6) = [Amw?_cos(8) cos(wyrT),  161< Opax

0" = —rb, 181= Bnax
ey
where m > 0 and [ > 0 are the mass and the length of the pen-
dulum, respectively. The + (or -) sign is used for the normal
(or inverted) pendulum. The parameter A € R represents the
amplitude of the support displacement, b > 0 is the effective
angular viscous damping constant, g > 0 is gravitational accel-
eration, wy; > 0 is the frequency of the input motion, > 0 is
the coefficient of restitution at impact, and 7 > 0 representing
the time variable. The constraints are placed symmetrically at
0 = +60,,4y.
The inverted case is considered first. Defining t = /(J/Dt
and ¢ = 0/6,,,, the non-dimensional equations of motion for
the system are

¢+ 2ad — ¢ = Beos(wt), |Pl< 1, )
¢t =-r¢7, l¢l= 1,

where 2a = b/ \mPg, © = wa+/l/g, and B = Aw? | 8Omax-
The parameter a represents the non-dimensional damping ratio,
[ the non-dimensional driving acceleration, w is the dimension-
less driving frequency, and r is the coefficient of restitution. The
non-dimensional equations of motion for the normal pendulum
are

l¢l< 1L,
3
lpl= 1, @

¢+ 2a¢ + ¢ = Bcos(wt),
5 = -rb
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Figure 3: Impacting pendulums: (a) inverse pendulum, and (b) normal pendu-
lum.

where the dimensionless parameters for this case are the same
as for the inverted pendulum, with 6 defined as in Fig. Ekb).
The dynamic behaviour of the normal and inverted pendulums,
equations (2) and (3)), have been simulated. The parameters
have been chosen as @ = 0.075, 8 = 1.5, w = 4, r = 0.99,
#(0) = —0.4, and ¢(0) = —0.99. The state trajectories are
plotted in Fig. ffa) and (b). The phase spaces are depicted in
Fig. a) and (b), respectively. Notice how ¢ and ¢ have stable
and periodic behaviours.
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Figure 4: State response of inverse (a) and normal (b) pendulums.
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Figure 5: Phase space of inverse (a) and normal (b) pendulums.

3.2. Dynamic equations of a three-degree-of-freedom juggling
system

Consider the case that two juggler robots with three degrees
of freedom that are playing a ball (see Fig.[6). The first juggler’s
end-effector position can be retrieved through the following ge-

Juggler robot2 < >
Xo Xo

» Juggler robotl

Figure 6: Geometrical structure of two juggler robots with three degrees of
freedom each.

ometric relationships

Xe = Ly cos(q1) + Ly cos(qi + q2) + L cos(q1 + g2 + q3) + Xo,
ze = Lyisin(q1) + Ly sin(g1 + q2) + L3 sin(q1 + g2 + ¢3),

“
where g1, 42,93 € R are the joint angles of the juggler robot
1, Ly, Ly, Ly > 0O are the length of the links, and Xy € R is
a displacement along the horizontal axis of the world frame W.
Similar expressions can be obtained for the second juggler robot
with the related joint angles g4, g5, g6 € R. The dynamic equa-
tion of each juggler robot has the following form

M ;i(qs)Gsi + Cri(quir qidqui + 84i(qsi) = Byityi, i=1,2 (5)

where g1 = [q1.¢2.43]" and g2 = [q4.g5.q6]" are the stack-
ing vector of each manipulator joinnts, ¢;; € R? the related
time derivative vector, M;; € R¥3, C;; € R™3, and gj; € R?
are called the inertia matrix, the Coriolis matrix, and the vec-
tor of gravitational terms, respectively. Also, By; € R¥ is the
allocation matrix for the actuation 7;; € R”, with 0 < m < 3.

For the first ball-juggler robot, the impact condition is de-
fined with respect to the state vector g, as

Xp — [L] COS(C]]) + L2 COS(L]] + 6]2) + L3 COS(C]] +q + (I3)
+X0] = O,

2 = [ L1 sin(q1) + Lo sin(g1 + g2) + Ls sin(gy + ¢ + ¢3)| = 0,
(6)
where x, € R and z;, € R are the position of the ball in W.
Note that the similar expressions can be obtained for the second
juggler robot.

Three forces affect the dynamic behaviour of the ball, with
mass m, > 0, during the free-flight motion, namely: the air
resistance force, f, € R?, the Magnus force, f,, € R?, and the
gravitational force f, € R3. Following |Zhang et al.| (2018), we
have

MeVp = fa + fm + fg’ @)
where

1
Ja= _Epsacallvb”‘}b» (®

Jm = pwptpsacivp, &)



fe =10,0,-m,g]", (10)
where p > 0 is the air density, ¢, > 0 is the drag coefficient,

Vp = [va Vp, vbz]T € R3 is the translational velocity of the
ball, ||-||> 0 is the Eucledian norm operator, w;, € R? is the ro-
tational velocity of the ball, and ¢; > 0 is the lift coefficient.
Finally, s, > 0 and r, > 0O are the effective contact area and
radius, respectively. Therefore, again following [Zhang et al.
(2018), the motion of the ball can be represented by the follow-

ing equations

VbX
Xp Vb,
Vb | Vb,
B o —=—psa(edvpll=2wprpervy, |, (1
Vp, 2m
Vb, = 5P Sa(Callvell=2wprpc)vy,
0,
—=—pSa(Callvpll-2wprsc) vy, — g
L 2m .

where yj, is the position of the ball y direction of W.
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Figure 7: Measured ball motion trajectory during ball-playing game by two
juggler robots. Red marker O indicates the initial position of the ball.
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Figure 8: Phase portraits of the ball states.

After an impact, the translational and rotational velocities of
the ball are updated according to the following equation (see
(Serra et al.| 2017))

V; =Vt RrotAvvRZ;);(V; - Vr) + RmtAva;]:gth9 (12)

+ T (.~ T
Wy = RiptAyiRy 0 (vy = Vi) + RigiAyuR,

Y

Wy (13)

where v, € R? is the velocity of the racket attached to the jug-
gler robot’s end-effector at the hitting time, R,,, € SO(3) is

the rotation matrix of the racket frame with respected to the
world frame, A,, = diag(l — k,,1 — k,,—e,), A,y = k1S,
Ay = k1S 1, Ay = diag(l — k72, 1 — k1%, 1), and

0 10
Ss=|-1 0 0.
0 00

The values of the parameters were chosen as m;, = 2.7- 1073,
e, =737k, =615-10"", k, = 2.57-10%, and r = 2 -
10~%m in the carried out simulations (Zhang et al.[(2018)). The
measured ball motion trajectory (the so-called juggling pattern)
is plotted in Fig.[/]in the x — z plane of W. It is observed that
the juggling pattern results in the desired repetitive action for
the whole playing time. The phase portraits of the ball states
are plotted in Fig. 8| These figures confirm the hybrid nature of
ball motion and periodic behaviour in the steady-state.

3.3. Juggling motions with shaped end-effector and shaped ob-
Jects

Non-prehensile dynamic manipulation of polygonal or
shaped objects by robotic arms is studied from kinematics and
planning viewpoints. In the studied manipulation methods,
given a goal position, an object’s required release position and
velocity are determined for throwing. Then, the object is ma-
nipulated to its goal configuration. Dynamic actions are throw-
ing, hitting, catching, and grasping. A robot system needs to
perform such activities to realize dexterous and flexible manip-
ulation. One of the characteristics of such movement is that the
robot can manipulate an object quickly. The important thing is
for the robot to know that higher speed is required.

A structure of a humanoid robot that performs juggling ma-
nipulation is shown in Fig. O[a). The car juggler humanoid
robot is equipped with a high-resolution camera, multi-finger
hands, a strong data/signal processing processor, good mechan-
ical structure, and high-speed servo valves. A diesel engine
will generate hydraulic pressure, and the mobility required for
juggling the cars will come from hydraulic accumulators. Four
mentioned dynamic actions are realized in this test-bed. Some
interesting robotic platforms have been implemented to per-
form juggling actions with shaped objects and different shape
end-effectors. [Erumallal (2018) implemented the contact jug-
gling manipulation of a disk with a disk-shaped manipulator,
called the mobile disk-on-disk. The system consists of two
disks in which the upper disk (object) is free to roll on the
lower disk (hand) under the influence of gravity (Fig.[9[b)). The
throwing, catching, and balancing of an object has been stud-
ied in this experiment. As shown in Fig.[9(c), 1-DOF juggling
prismatic robotic system simulated in ADAMS. The shape of
the object is cubic, and |Akbarimajd| (2009) proposed an opti-
mization algorithm for finding optimal flight height. For solv-
ing dynamic catching, a new box-like end-effector for juggler
robotic systems (Fig. [9[(d)) was proposed by (Schill and Buss
(2018)), showing that the end-effector shape reduces contact
surface with the ball and thus avoids jamming. Spherical ob-
jects are automatically driven to the throwing position, while
cuboids must be placed manually.
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Figure 9: Different types of juggler robotic systems with shaped end-effector
and shaped objects: (a) a car-juggling humanoid robot (courtesy of [MG-7), (b)
juggling a disk with a disk-shaped end-effector by using a two-link manipulator
(courtesy of (2018)), (c) a one-degree-of-freedom prismatic joint arm
manipulating a cubic object (courtesy of’ (2009)), (d) two symmet-
ric robots perform juggling action (courtesy of (2018)).

and catching.png

Figure 10: Throwing and catching of an object.

We consider a two-juggler robotic manipulator that repeat-
edly throws and catches an object in a gravity field (Fig.[I0). A
“catch” consists of letting the object impact the palm mounted
in the end-effector of the juggler and come to rest. By proper
choice of the thrown velocity and the geometry of the arm, a
unique recurrent motion pattern of the object emerges. This
behavior appears without sensing a large set of initial configu-
rations of the part. Instead of collapsing the possible part con-
figurations to a single point, the device collapses the initial con-
figurations into a cycle similar to a stable limit cycle.

4. Dynamic behaviors of bipedal robots

A biped robot is an open kinematic chain consisting of two
sub-chains called legs and the torso, all connected at a common
point called the hip. One or both legs may be in contact with
the ground. When only one leg touches the ground, the contact-
ing leg is called the “stance” or “support” leg, while the other is
referred to as the “swing” leg. The end of a leg will sometimes
be referred to as the foot. The single support or swing phase is
defined as the locomotion where only one foot is on the ground.
Conversely, the double support is the case in which both feet are
on the ground. Walking is then defined as alternating phases of
single and double support. The requirement is that the displace-
ment of the horizontal component of the robots center of mass
(COM) is strictly monotonic. Running is defined as sequen-
tial phases of single support, flight, and (single-legged) impact,
with the additional provision that impacts occur on alternating
legs.

foot biped.png

Figure 11: Different types of shaped foot bipedal/humanoid robots: (a) AT-
LAS (courtesy of [MG-ATLAS), (b) LOLA (courtesy of [MG-LOLA), (c)
ERNIE (courtesy of (2018)), (d) WABIAN-2R (courtesy of [[MG-]
WABIAN), (e) RuBi (courtesy of IMG-RuBi), (f) Cassie (courtesy of [Duan|
et al| (2021)), (g) a typical biped robot with hybrid leg mechanism (courtesy of

Gim et al.| (2018)), and (h) ASIMO (courtesy of IMG-ASIMO).

Foot and ankle are critical structural components of a biped
robot. Their proper design is a decisive factor in creating the
correct gait and ensuring these robots’ walking/running stabil-
ity. Looking at the legged robots literature, bipeds have been
studied in two separate categories: bipedal robots with shaped
feet and point-foot bipedal robots. We pay attention to these
two types of biped robots and their related issues in the follow-
ing.

4.1. Shaped-foot bipedal robots

Laboratories around the world have produced many different
types of bipedal/humanoid robots with shaped feet, such as AT-
LAS, LOLA, ERNIE, WABIAN-2R, RuBi, Cassie
(2021))), a typical biped robot with a hybrid leg mechanism, and
ASIMO (Fevre et al| (2018)); [Gim et al| (2018)). These biped
robots are shown in Fig. @a)—(h).

A mechanical model is “fully actuated” when the number of
independent actuators equals the number of degrees of freedom
(Westervelt et al.| (2007). If there are fewer actuators than de-
grees of freedom, it is “underactuated”. If there are more ac-
tuators than degrees of freedom, it is “overactuated” or “redun-
dant”. A biped robot in single support is fully actuated if it has
a stationary stance foot (i.e., flat on the ground and neither ro-
tating nor slipping (Fig.[I2Ja)), and all of the joints of the robot
are actuated; otherwise, the robot is underactuated. In particu-
lar, notice that a fully actuated robot (i.e., a robot with feet and
all joints actuated) is underactuated in the case the heel rises
and the foot rotates about the toe (Fig. @kb)). Whenever non-
flat-footed walking takes place, underactuation is present.
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Figure 12: Various phases of bipedal walking with non-point feet. The single
support phase (also called the swing phase) is shown in (a) and (b), while a
double support phase is depicted in (c). If all of the joints of the robot are
actuated and the feet are not slipping, then comparing the number of degrees
of freedom to the number of independent actuators reveals that the robot is
fully actuated in (a), under-actuated in (b), and over-actuated in (c) (courtesy of
Westervelt et al.|(2007)).

The most critical and primary topic for a humanoid biped
robot is its walking ability. Many factors influence the stabil-
ity of walking, such as center-of-gravity (CoG) trajectory, torso
posture, and the ZMP trajectory. For now, the concept of ZMP
is the most popular theorem to use in achieving the criterion of
stable walking. The ZMP is defined as the point on the ground
at which the net moment of the inertial forces and the gravity
forces has no component along the horizontal axes (Vukobra-
tovic et al.). For kinematic chain structure, the ZMP coordi-
nates in x- and y-direction are calculated from

ZHNLI (miGi + @)x; — mi%iz; — (1Iiby)y)
Xemp = N, » 5 (14)
ey MiZi + 8)

Yo = SN (miG + @)y — miyizi — (16):)
anp = -
S miE+ g)

where m; > 0 is the mass of link i. The coordinates of the i-th
link are described by (x;, y;, z;). Correspondingly, accelerations
of link i in x—, y—, and z—direction are represented by X;, ¥;,
and Z;, respectively. (I;), > 0 and (;), > 0O are the inertial
components. (§;), € R and (§;), € R are the absolute angular
acceleration component around x— and y— axes at the CoG of
the i-th link. N; > 0 is the number of links. According to the
dynamic stability criterion defined by the ZMP (see [Vukobra-
tovic et al.), the position of ZMP should be within the stable
region, which changes from the area of the standing feet to the
convex polygon formulated by the two feet when gaits change
from the single support to the double support phase. The ZMP
trajectory and ZMP regions of biped robots with flat feet dur-
ing locomotion and in single support phase and double support
phase are given in Fig.
Considering that the CoG has the following expressions
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Figure 13: ZMP trajectory and ZMP regions of biped robots with flat feet.

where m = 3. m;. One can rewrite equations (T4) and (T3) in
terms of the COG equations (I6) and (T7) as follows

mxcog Zcog — hy

18
m(g + Zcug) ( )

Xzmp = Xcog —

mj}cogzwg - hx
Mg + Zeog)

zmp = Ycog — (19)
where /i, € R and hy € R are the time derivatives of the an-
gular momentum in x and y directions, respectively. As shown
in Fig.[I3] the ZMP position should by confined between upper
and lower bounds. Assume that the ZMP’s upper and lower
bounds are specified by (Xznpus Xgnpu) and (Xznpis Yamp,), T€-
spectively. Therefore, the stability conditions can be written
as )

mxcochog - hy

- < Xompus (20)
m(g + Zcog) o

Xamp,l < Xcog —

mycogzmg - hx

= < Yampau- 2D
m(g + Zeog) r

Yemp,l < Yeog —

Now, we pay attention to the issue of the friction constraint.
Let fr = [f7., fr.. fr]" € R? be the contact force vector, where
Fy., Fy, and F +, are the components of fy along x, y, and z
directions at the contact point, respectively. To ensure a no-
slipping condition, the contact force f; must satisfy the follow-

ing contact constraint
N (22)

where ¢ > 0 is the static friction coefficient of the substrate. The
friction constraint can be geometrically represented as a cone
whose axis is orthogonal with respect to the support surface
and with an opening angle equals to @ = arctan(u). Nonlinear
constraint (22)) can by approximated through

Il upfrs 1f51S mpfrs (23)

where , = u/ V(2). The previous friction force constraints can
be rewritten in a matrix form as follows

I 0 -—u
-1 0 -
0 1 —u, ff < 04’ (24’)
0 -1 —u,

with Oy the zero vector of proper dimensions.
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Figure 14: Different types of point foot biped robots: (a) RABBIT (courtesy
of |Chevallereau et al.| (2003)), (b) MABEL (courtesy of |Grizzle| (2009)), (c)
ATRIAS (courtesy of Ramezani et al.|(2014)), (d) Two-link walker (courtesy of
Manchester et al.|(2011)), and (¢) HUME (courtesy of |[Kim et al.|(2014)).

4.2. Point-foot bipedal robots

Five well-known biped robots with point feet that attracted
the focus of scholars for studying their hybrid dynamic be-
haviors are RABBIT, MABEL, ATRIAS, two-link walker, and
HUME. They are all displayed in Fig. [[4[a)-(e). RABBIT is
the output of the cooperative research works of automation and
robotic laboratories in France (Chevallereau et al.|(2003))). MA-
BEL is a robot engineered in 2009 by researchers at the Uni-
versity of Michigan, well known for being the world’s fastest
bipedal robot with knees. MABEL can reach speeds of up to
3.6 m/s (6.8 mph). The name MABEL is an acronym for Michi-
gan Anthropomorphic Biped With Electronic Legs. MABEL
weighs 143 Ib (about 65 kg), with most of its weight being in the
top torso area (Grizzle|(2009)). ATRIAS represents a collabora-
tive effort of Oregon State University, Carnegie Mellon Univer-
sity, and the University of Michigan. The robot has been con-
ceived for energy efficiency, speed, and robustness with respect
to natural terrain variations, without over-reliance on external
sensings, such as vision (Ramezani et al.|(2014))). The two-link
walker was built by the Massachusetts Institute of Technology
(MIT), USA (Manchester et al.| (2011)). HUME is a hyper ag-
ile bipedal robot developed by Sentis’s team at the University
of Texas at Austin, USA (Kim et al.[(2014)). This robot was de-
signed to quickly traverse rough terrains that are at the extreme
of what humans can overcome on two feet.

Hybrid systems exhibit characteristics of both continuous-
and discrete-time dynamical systems and have become a com-
pelling approach to study legged locomotion and mechanical
systems subject to impacts (Grizzle et al.| (2014)). Models of
legged robots are hybrid with continuous-time domains repre-
senting the Lagrangian dynamics and discrete-time transitions
representing the changes in physical constraints (i.e., a non-
stance leg contacting the walking surface). A walking motion is
a periodic orbit in a hybrid model, as evident in Fig.[I3] Key el-
ements are the continuous dynamics of the single support phase,
written in state-space form as x = f(x) + g(x)u, the switching
or impact condition, #(x) = 0, which detects when the height of
the swing leg above the walking surface is zero, and the reini-
tialization rule coming from the impact map, x* = A(x™). In the
running motion of the biped robots, switching occurs between
the standing phase and free-flight phase as shown in Fig.[I6] in
which xy is the state of the biped robot during free-flight, x; is

10

modell.png at = A7)

Figure 15: Single-mode hybrid model of walking that corresponds either to
walking with point feet.
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Figure 16: Double-mode hybrid model of runner point-foot biped robots.

the state of biped robot in support phase, and x;; and x} are the
reinitializations of the robot states. '

5. Connection between non-prehensile juggling manipula-
tion and locomotion of biped robots

We are interested in finding a dual interpretation (or a math-
ematical map) between bipedal locomotion and non-prehensile
manipulation (particularly the batting/juggling primitive) sys-
tems. The possibility of improving the robustness of bipedal
robotic systems will be thus obtained. To this end, we inves-
tigate the similarity between juggling tasks with impacts and
both flat-feet and point-feet biped robot locomotion.

5.1. Connection between flat-foot bipedal robot locomotion
and juggling manipulation with a flat-shaped object

The system presented in Fig.[T7(a) shows a manipulation sys-
tem. In this figure, the radius and the mass of the manipulated
sphere are ro > 0 and my > 0, respectively, while the planet
earths radius and mass are Ry > 0 and My > 0, respectively.
We can solve the manipulation problem with these parameters.
Now, we are going to exchange the parameters. In other words,
we gradually enlarge the radius and the mass of the sphere to Ry
and M, and, at the same time, we shrink the radius and the mass
of the planet earth to ry and my, respectively. Consequently, the
direction of the gravity vector, g € R* will be reversed. These
changes eventually result in the system depicted in Fig. [[7(b).
Looking upside-down at Fig. [I7(b), we see the system shown
in Fig.[T7(c), that t is a bipedal robot walking on the earth.

After sketching out this rough similarity, we go through
many aspects connecting the two fields, from the path planning,
the different phases of the task, to the stability criteria, etc.

5.1.1. Connection between the manipulated and locomotion
path

We explain the path planning strategy for non-prehensile ma-

nipulation and locomotion through Fig. [I8(a) and (b). At the

beginning of each cycle, the first manipulator is ready to catch



Figure 17: Duality of locomotion and non-prehensile manipulation (courtesy
of |Beigzadeh et al.|(2008)).

the object in point 1. Sensing the first impact signal, the con-
troller switches to smaller gains. Hence, the whole manipu-
lator accommodates the object’s motion (apparent low inertia
at the robot’s end-effector through, for instance, an impedance
control). Now, the set point of the manipulator is in a region
around point 2. When the first manipulator stops, the path plan-
ner realises that the impact has been damped, increasing the
controller gains (apparent high inertia). In addition, depending
on the cubic object’s angular velocity and the second manipu-
lator’s desired catch position, the path planner sets a new set
point for the manipulator around point 3 in terms of the desired
position and velocity. The manipulator decelerates to stop in a
closed vicinity of that set point. As a result, the object begins a
free movement to where the second manipulator expects it. In
the next step, the first manipulator moves to a position around
point 4 and waits until it gets a signal from the second manip-
ulator indicating that it has touched the object. Then, the first
manipulator goes toward point 5 along a trajectory that guaran-
tees a collision-free movement. The first manipulator waits at
point 5 to get a signal showing that the object has been thrown
upward. Receiving that signal, the first manipulator goes to
point 1 and waits for touching and catching the object again.

The sketched policy of the planner and controller’s non-
prehensile juggling manipulation holds almost the same for
the bipedal locomotion. The only differences are in the ref-
erence points and the trajectory between points 4 and 5 (see
Fig. @ka) and (b)). In the case of biped locomotion, the refer-
ence points are defined in the robots coordinate system attached
to the trunk. In contrast, the reference points are described in
the ground coordinate system in the object manipulation case.
As it can be seen in Fig.[I8]a) and (b), the trajectory which each
leg follows during the process with respect to the trunk is very
similar to the trajectory which each manipulator follows during
the manipulation process with respect to the base point.

5.1.2. Similarity between the phases of object juggling and
biped robot with flat-feet running

In an overall view, we may divide the non-prehensile jug-

gling manipulation primitive into four phases, namely: throw-

ing the object, free-flight, catching, and stabilisation (Fig. [T9).

The same cycle can be imagined for a runner biped robot. We

explain the running behaviour of the robot during a semi-cycle.

e Throwing phase. The bipedal robot running’s first step is
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Figure 18: (a) Dynamic manipulation of a cubic flat-shaped object by a juggler
robot, (b) gait pattern during the locomotion of a flat-foot biped robot with.
The planned and real paths are shown by solid black and dashed red lines,
respectively.
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Figure 19: Object juggling and biped robot running sequences.

“throwing” the body, during which the first leg carries the
body and prepares it to throw and pass to the second leg.
With the aid of Fig. 20l we can say that this phase oc-
curs between stages 1 and 3. Albeit the support leg throws
the body in this phase with an appropriate acceleration,
this acceleration stems from ground interaction force. We
should assume that the leg has no slippage relative to the
ground during the process of throwing. If any slippage
occurs, we cannot forecast what will be happened to the
robot, and then we cannot offer a suitable control strategy
to get a favourite behaviour from the body. So we have to
assume that there is enough friction between the support
leg and ground to avoid slippage between them.

o Free-flight phase. The free-flight is the second phase of
running. Based on Fig. 20] this phase starts from stage
3 and continues until the next catching phase occurs, i.e.,
stage 7. Ignoring the effect of air resistance, we can as-
sume that the free-flight depends only on the location and
acceleration of the body at the moment of the beginning of
the flight, i.e., in stage 3. It is considered that if the robot’s
body has some angular velocity at the moment of the be-
ginning of the flight, then its orientation would change un-
til the next catching would occur in stage 7.

o Catching phase. It is the third phase of the running pro-
cess. In Fig. Z()], this stage is from stage 7 to stage 9. A
catch occurs when the second leg impacts the ground and
settles on a stable edge. This occurs in stage 7, and it is de-
sirable that the least impact forces would be generated by
the impact between the robot leg and ground. The catch-
ing phase goes on until the vertical velocity of the body is
damped completely. In general, we should analyse the im-
pact process before and after it. It is necessary to compute
the normal and tangent forces applied at the impact point
and calculate the slippage of the impacting vertex.

o Stabilisation phase. This stage enters into the computa-
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Figure 20: Stages (from 1 to 9) of the body movement during running.

tional cycle when the bipedal robots may be on the verge
of instability for any reason and may fall.

5.1.3. Similarity between object juggling and walking

Figure 2] displays the snapshots of a polygonal object ma-
nipulation on an inclined surface using one-degree-of-freedom
manipulators. Assume that the bases of the first, second, and
third manipulators are installed in the positions P,, P, and P,,
respectively. The object is first carried by the first manipulator,
delivered to the second robot, and then to the third one. In this
way, object manipulation is performed by a set of manipulators.
The red triangle on one edge of the hexagon object illustrates
the orientation of that edge during manipulation. The general
impression is that the object is manipulated periodically and in
the same manner by the manipulators.

In Fig.[22] the stick diagram of a two-link walker on the same
inclined surface is demonstrated. In the position P,, one leg is
in the support phase, and the other leg is in the swing phase.
In the position Py, the status of the legs changes, and in P, the
status of the legs is reversed again. In Fig. 22] the red lines
indicate the status of the support leg, and the blue lines indicate
the status of the swing foot. It is observed that the walking
process is executed periodically while maintaining the robot’s
stability.

Comparing the two Figs. 21 and 22] we find that the points
P,, Py, and P., which belongs to the support legs at different
times, correspond to the base points P,, P, and P, respec-
tively. That is, the task of carrying the body of the two-link
walker by the supporting leg is similar to the task of carrying the
object by the corresponding manipulator. Also, it is observed
that the trajectory of the two-link walker’s body is similar to the
trajectory of the manipulated object. In Fig. [21] if we assume
that each manipulator is attached to the object and acts as the
leg of two-link walker in the carrying phase of the object ma-
nipulation, we can reach this result that the two processes are
very similar.

5.1.4. Similarity between stability criteria in biped locomotion
and dynamic grasp criteria in juggling
Now, stability conditions for locomotion of flat-foot bipedal
robots and dynamic grasp criteria in 2-dimensional juggling are
discussed and compared.
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Figure 21: Snapshots of a polygonal object non-prehensile manipulation on a
inclined surface. The red triangle on one edge of the hexagon illustrates the

orientation of that edge (courtesy of |Beigzadeh et al.|(2013)).
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Figure 22: Snapshots of a gait of a two-link walker on a inclined surface. The
red lines indicate the status of the support leg. The blue lines indicate the status

of the swing foot (courtesy of |Beigzadeh et al.|(2013)).



Figure 23: Forces applied to an object located on the palm of juggler robot.

o Stability criteria in biped locomotion. For a planar biped
robot, we use the ZMP stability conditions (20) and (2T)
in x — z coordinates as

hy - chogzcog

< - . 25
M(g + ng) S Xempu — Xeog ( )

Xzmp,] — Xcog <

To keep the foot in contact with the ground, we should
have g + Z.,, > 0, as pointed out by |Spong et al.| (2007).
Then, from (23)), we have

chngzcog - M(xcog - xzmp,l)(g + Zcog) - hy <0, (26)

_chogzcog + M(-xcog - xzmp,u)(g + Zcog) + hy < 0. (27)

The friction constraint (24) must hold to get stable support.
Besides, normal and tangential components of the contact
force in the centre of pressure are fr = M(g + Z.o,) and
ff. = MX,,q, as written by Sardain and Bessonnet| (2004).
Thus, from (24), we have

_xcog - ,up(g + Zcog) < 0, (28)

Xeog — ,up(g + ZCog) < 0. (29)

Putting (26), 27), 28), and (28) together, we obtain the

following foot stability conditions

Mzcog _M(xcog - xzmp,l) -1

_ _ Xcog
MZcog M(xcog xzmp,u) g+ | < 0s. (30)
-1 —Hp 0 h
1 —p 0 4

The four inequalities in (30) are sufficient conditions for
robot stability.

Dynamic grasp criteria in juggling. Consider the case that
a square object of length d > 0 is settled on the palm of a
juggler robot as shown in Fig.[23] In this figure, the normal
force to the palm is decomposed into two forces, f.; € R?
and f» € R2, applied to the vertices of objects resting
edge, and f; € R? is the friction force. The following
equations hold at any time

Jer sin(p) + fo sin(p) — fr cos(e) = myic,
fe1cos(p) + fea cos(p) + Fysin(p) — myg = myyc,

fard = food = frd = hg,
(31
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where x¢, yg € R? are the coordinates of the objects CoM
expressed in the world frame W, g is the objects angular
momentum about its CoM, m, > is the object mass, ¢ € R
is the angle of the palm with respect to the horizontal axis
of W, and g € R? is the gravity vector. For the sake of
comparison with the stability condition in biped locomo-
tion, we assume a horizontal palm during the manipulation
(i.e., ¢ = 0). Then, we have

_ff = mUXG>
fcl + fc2 —myg = moyG7 (32)
fcld - chd - ffd = hg.

To retain dynamic grasp while transporting the object, we
should have

fcl > 0,
fe2 >0, (33)
|frl< plfer + feal,

with p > 0 the friction coefficient. Finding f;1, f.2, and f;
from (32), replacing them into (33) yields

myd/ N2 —myd/ V2 -1

Xc
“md/ N2 =mod/ N2 V|| | co, g
-1 —HM 0 hG
1 —u 0

If (x5,y;) and (x,,y,) are coordinates of the resting edges
left and right vertices in W, we have x; = xg — d/ V2,
Vi =6 —d/ V2, x, = xg +d/ N2, and y, = yg - d/ V2.
Substituting these parameters into (34) yields

-mod(y; —yg) med(x;—x5) —1

X
mod(yrl YG) myd(x, — xg) 1 g +7%| <0,
— —u 0 ;
1 —u 0 G

(35)
The four inequalities (33)) are sufficient conditions for dy-
namic grasp.

In the above two robotic systems (juggler system and biped
robot), we assume that enough friction exists between the ob-
ject and the palm, and between the biped robot’s feet and the
ground, to prevent object and feet sliding, respectively. Com-
paring (30) with (33), we conclude that the stability conditions
in support phases of biped robot and dynamic grasp conditions
during the transporting phase of a juggling task have the same
structure. In (30) and (BJ), if the condition related to the first
row is violated, the heel acts as a pivot so that the foot turns
about it, while the left vertex of the support edge will act as a
pivot and the object rotates about it, respectively. If the con-
dition related to the second row is violated, the toe acts as a
pivot so that the foot rotates about it, while he right vertex of
the support edge acts as a pivot and the object rotates about it,
respectively. If both the first and second lines are violated, the
foot leaves the ground, while the object leaves the palm, respec-
tively.



5.1.5. Throwing model in juggling manipulation and biped lo-
comotion

The throwing motion is generated subject to several con-
straints. Common constraints are listed below.

(a) Joint variable limits.

q- <q;i <4’ (36)

where g~ € R and gV € R are the lower and upper bounds
for the joint ¢; € R.

(b)

Actuator torque capacities.

<<y, (37)
where 74 € R and ¥ € R are the lower and upper bounds

for the joint torque 7; € R.

(c) Feet positions and orientations. The global coordinates
and the angles about the global z axis for both feet are

assigned for each phase.

(d) Dynamic balance. The ZMP should exist within the foot
support region (FSR), a convex hull (excluding the bound-
aries) generated by the surfaces of the contacting foot. The
FSR is simply the single foot contact area for the single
support phase. For the double support phases, the FSR is

formed by the contact areas of both feet (Fig. [I3).
(©)

Time boundary conditions.

q'(treleaw) _ qrelease q'(trelease) _ C-Ireleuse q(trelease) >0

i = 4; s i = 4; 5 B
(38)

where q{ele‘”"’ € R and q{ele‘”e € R are the value of i-th

joint position and velocity when the support leg is released

or detached from the ground.

(f) Leg release orientation. For a flat ground, the orientation
angle is formed between the support foot and the body’s

CoM.

(g) Target distance throw. The body of the biped robot is re-

quired to reach a given target point, the release position,
release velocity, and flight time must satisfy the projectile
equation.

For the non-prehensile juggling primitive, the constraints (a)
and (b) are the same. Instead, “palm position and orienta-
tion” must be used in (c). The term “Dynamic balance” con-
dition (30) is replaced with “dynamic grasp” condition (33) in
(d), which, as noticed in the previous subsection, have the same
structure. For all the joints of the juggler robot, we will have
time boundary conditions such as (38)). Besides the palm ori-
entation, we need to specify the orientation of the juggler’s arm
to achieve a better throw. Finally, when the thrown object is re-
quired to reach a given target point, the release position, release
velocity, and flight time must satisfy the projectile equation.

Therefore, for both biped locomotion and juggling action,
the throwing problem has an input vector, u consists of joint
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Figure 24: Schematic representation of the throwing model.
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Figure 25: Similarity between non-full grasping ((a) and (b)) and marginal ZMP
stability ((c) and (d)).

trajectory parameters, under the equality constraints 47, and in-
equality constraints conditions 4, in which the squared norm
of the actuator torque vector is minimized. The output of this
problem is the trajectory parameters of the object and the ac-
tive body of the bipedal robot. The throwing model is shown in

Fig.[24]

5.1.6. Similarity between non-full grasping in juggling and
marginal ZMP stability
Balancing is more noticeable in fingerless jugglers. In jug-
glers with fingers, balancing is conceivable in the form of grasp-
ing. That is, grasping objects with the fingers prepares the ob-
ject to be thrown in the right direction. So, the balancing stage
can be called the grasping stage in jugglers with fingers.

In juggling actions with polygon objects such as cu-
bic/rectangle objects, during the caching phase, the object may
not completely lie on the palm (end-effector surface) of the jug-
gler robot, and part of it may go out of the palm. This is called
non-full grasping (Fig.[25(a)-(b)). Suppose the juggler does not
react quickly and does not make the necessary corrections for
full grasping. In that case, the object may be out of the throw-
ing manipulation, or the robot may not throw the object cor-
rectly towards the target. As shown in Fig.[25a)-(b), the object
should be moved towards the centre of the palm.

In the case of a bipedal robot, consider a situation in which
the gait of the robot is disturbed, and the robot’s ZMP goes
to the corners of the leg to be removed in the next cycle
(Fig. 25(c)-(d)). In this case, the robot must make corrective
actions before moving the support leg, that is, move ZMP to-
wards the other leg (as in Fig. c)—(d)). Otherwise, the robot
may become unstable and fall.

Therefore, the stabilisation phase is needed in both object
juggling and biped locomotion.



5.1.7. Similarity between catching in juggling and touch down
in locomotion

A catch occurs when the object impacts the juggler’s palm
and settles to a stable edge. To achieve a steady catch, the im-
pact magnitude at the catch time should be reduced. The catch-
ing task is complex since it consists of many impacts. To sim-
plify the analysis, we assume that friction at the impact point
is sufficiently high and the restitution coefficient low enough
that the post-impact velocity of the impact point on the ob-
ject is zero. Under these assumptions, which consider the im-
pact as “sticking”, the object quickly settles to rest, reducing
throw-catch cycle time (Lynch et al.| (2001)). If such a stick-
ing impact occurs, assuming changes in joint angles of the ob-
ject at impact time to be negligible, pre-impact relative veloc-
W pact) and post-impact relative veloc-
ity (v;impm,t, VY impacts @impacy) OF the objects CoM and the palm

will satisfy (Lynch et al.|(2001))

lty (vx, impact’ V‘%—L impact’

+
x_impact

v (39)

+ —
= YimpactWimpact = 0,

+ + _
V)’—im[’ﬂc‘t - ximl’aClwimpact - Ov (40)

+ + -
moximPaCt(Vy_impact - vy_impact) - moyimpad(vx_impact - Vx_impact)

— 7. + T
— fimpact (wimpact wimpact) ’

(41)

where Ijjpqe > 0 is the total inertia of the object at the im-
pact time and (Ximpact»Yimpact) 1 @ vector from the object’s CoM
to the impacting vertex. Equations (39) and {@0) imply zero
velocity of the impact vertex, whereas (1)) ensures that the im-
pulse force passes through the contact point. The post-impact
angular velocity about the contact point (w}, a ) can be easily
calculated through (39)-(&1I). To achieve a sticking impact, the
impact force should be reduced and/or it should be absorbed.
To this end, it is possible to perform a compliance control in
the joints of the manipulator and the object at the impact time.
It is also possible to create physical compliance by covering
the palm and the sole surfaces with a high-friction and low-
restitution fabric (Lynch et al.| (2001))). Under these solutions,
the impact is absorbed, and the impulsive force exerted to the
foot is small, and a sticking impact will occur.

In the case of locomotion, the leg of the biped robot should
land on the heel or toe, and then it should settle on the sole.
This limits the angular release velocity to small values, which
yields low speeds at the catching time.

5.2. Connection between juggling motions with impact and the
locomotion of point-foot legged robots

In this subsection, we assume that a maximum of one robot
leg is used as a support leg at any given time. Similar to the
previous subsections, the similitude between juggling motions
with impact and the locomotion of point-foot legged robots are
summarised below.

1. Consider some snapshots of a real human running illus-
trated in Fig. 26] In Fig. the time diagram is given.
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sequences.png

Figure 26: Snapshots from a real human running.

According to this last, 7,; > 0 and Tj; > O are the time
instants when the right and left legs hit the ground, and
Ty > Ois related to the free-flight phase in which the feet
have no contact with the ground. Therefore, T,; and T};
are called impact times. These impact times will become
smaller with increasing the running speed. So, the run-
ning includes two phases: the impact phase and the free-
flight phase, that are iterated as shown in Fig. On the
other hand, in ball-juggling robots in Section [3] we have
observed that the ball is in free-flight motion, and its dy-
namic behaviour is controlled by the force impact at the
impact times. Also, we have analysed the dynamic be-
haviour of inverse and normal pendulum subject to impact
effect. We inferred that the pendulum’s motion under im-
pact is confined to the desired region. Therefore, the jug-
gler robots and mechanical systems with impacts have the
same iterative cyclic activity shown in Fig. 28]

timing.png
T Tpr Ty Tpr Ty

i i g Al

Figure 27: Real human running timing diagram.

Impact-time

Free-flight

Figure 28: Iterative object juggling and biped robot running sequences.

)/ § .
M T

Figure 29: (a) Visualisation of biped running step, and (b) state sets of a biped
running and juggler system (courtesy of Y1 and Lin|(2015)).

(a

]

2. The running motion consists of support and flight phases
with instantaneous takeoff and touchdown transitions



s . the ball dynamics in (TT) and its velocity resetting condi-

tion in (I2) and (13), g, M, C, go, B, 7, A, and A, in @2)
take the following values

1 a=[l dh .

») " A

M = blockdiag(mb13, My (g1, sz(QJz))

. 1
C= blockdlag((—Epsaca||v;,||+pwbrbsacz)13, Cnlgn), CJz(CIJz))

T
Figure 30: (a) The behaviour of the states of ball motion during several cycles, y

g0=[0 0 —mg Glan) Glhgn)
and (b) the idealised path of a runner’s CoM position.

(Fig.29()). Let S ; and S s be the sets of valid states in the

T
_[.r T
T= [711 712] ’

stance phase and flight phase, respectively, and let S,_ s B = [O%T 5 B;l BZ]T,
and S s, be the sets of valid states at takeoff and touch- e
down, respectively. A visualisation of a running step is A, = 1o,

given in Fig. 29(b). This statement is also true for ball-
playing juggler robots. Because the ball and juggler robots
are in free-flight phase or in impact phase, and the state
sets of juggler systems will be as Fig.[29]b).

. In the high-speed running motion of bipedal robots, the

movement patterns of the robot body are similar to the ball
motion. To compare the behaviour of the bipedal robot
body in a running scenario with a juggling system, the be-
haviour of a ball during several cycles in a juggling sys-
tem and the idealised path of a runner’s CoM position are
illustrated in Fig. [@Ka) and (b). We observe that the run-
ners centre of mass position behaviour is very similar to
the behaviour of the states of the juggling system. The
overall assessment is that the catching time of the juggling
systems is minimal, and also, since the object’s mass is

where A,(q) € R™™ and Ay(g) € R™" are called the po-
sition renaming and velocity resetting matrices. Besides,
¥(q) = 0 is a state-dependent impact condition, the apexes
+ and — denote the quantities at a time instant after and
before the impact, respectively. Considering the structure
of the juggler robots in Fig. [6] the juggler dynamic in (3),
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Ay = diag(diag(vzx, Vo Vi) b, 13),

with I, the identity matrix of proper dimensions. For a
three-degree-of-freedom juggling system, the impact con-
dition was given in (0).

Also, [Farid and Ruggiero| (2021)) showed that in case, at
any given time, one leg of biped robot is in contact with
the ground and the other leg is in swing phase and, at time
instant ¢ = #;, the status of the foots change, the dynamic
equations of a biped robot can be written in the same form
of a nonlinear Lagrangian hybrid system given by (@2).
For a typical two-link walker, from Fig. [31] the switching
condition can be written as

negligible, the object is thrown to a higher altitude in a bit NHg) = h(@) +1al@) = hy(q) = 0 “3)
of time.
where
4. [Farid and Ruggiero| (2022)) found out that two phases can hi(q) = lcos(—q1) (44)
be recognzied in a ball-playing juggler system: a free-
motion or impact-less phase and an impact phase. There-
fore, the dynamic equations of two ball-playing juggler ha(q) = lcos(q2) (45)
robot can be written in the general form of a nonlinear
Lagrangian hybrid system as follows
hy(q) = Ltan(¢) (46)
M(q)g + C(q,9)g + go(q) = Bt, 9(q) # 0
+ _ — —
¢ =M@ Hg) =0 (42) L = Isin(~qy) + Isin(q2) @7)
g = A, Dq Hg) =0

where | = a + b. Therefore, ball-playing juggler systems
and point foot biped robots have the single-mode hybrid
model as shown in Fig. From the controller design
viewpoint, since the dynamic equation of biped robot and
juggler system are in the same form, each effective con-
troller designed for juggler systems applies to the biped
robots.
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Figure 31: Illustration showing the different quantities used when defining the
impact surface of the biped.
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Figure 32: Decomposition of the outputs normal pendulum (a) and inverse pen-
dulum into ¢; and ¢>.

5. In ball-playing juggling actions, the object’s motion is
controlled by the impact-like forces applied at impact
times. The stability and the speed of bipedal robots in
high-speed running motions are governed by the reaction
ground forces inserted by the legs to the ground. These
forces are in the form of impulse forces and have a short
life, and determine the speed of the bipedal robots after the
robot hits the ground. The value of these forces depend on
the pre-impact and post-impact joint rates of these robotic
systems and also the value of the mass and inertia matrix
after impact

OF = M(q(5))q(5) = M(q(t))q(ty). (48)

. The dynamic behaviour of two-link compass-like biped

robot in walking condition introduced by [Farid and Rug-

(2021)) is similar to two impacting pendulums pre-
sented in Section[3.1] Therefore, the output angle ¢ can be

used as a reference trajectory for the two-link walker. As
shown in Fig.[32] we have decomposed the angle ¢ in two
q1 and g, as reference trajectories for the two-link walker.

. A type of high-speed “jogging in place exercise” is very
similar to the juggling action of two juggler robots. As
shown in Fig. [33] at the initial time 7y, a biped robot is in
its initial standing status (Fig. 41(a)), and the sequences
of Figs. (b)—(c)—(d)—(c)—(b) are related to joggling in
place exercise. In this exercise, the biped robot controls
its dynamic stability by inserting impacts to the ground.
The hybrid model of this robot will be as a double-mode
hybrid model (Fig. [T6), in which the robot is in free-flight
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(a) (b)
Cde )\, / \

Figure 33: (a) Initial standing status of a typical biped robot, and the sequences
of (b)—(c)—(d)—(c)—(b) are related to joggling in place exercise.

(b)

robot.png

Figure 34: (a) Typical hopping robot, and (b) the geometrical structure of a
juggler system consisting of a bouncing ball, an actuated piston, and a vertical

rod (courtesy of|Tian et al| (2013)).

or contact with the ground, and the joint velocities after
impacts are updated according to the previous values of
joint velocities before impact.

8. The dynamic behaviour of confined hopping robot in ver-
tical plane (Fig.[34(a)) is similar to the dynamic behaviour
of juggler system (2013)) shown in Fig. 34]b).
The main difference is that a hopping robot is an active ob-
ject with a high mass, and it needs a larger force to over-
come the friction of its movement environment.

. The quadruped robots’ running (bounce) gait patterns are
similar to the juggler robot motions and high-speed lo-
comotion of biped robots. The running cycle is shown
in Fig. 3] This cycle can be transformed into the cycle
shown in Fig. 28] because we have two impact phases and
two free-flight phases, which are repeated in a cycle.

10. When four-legged animals walk in trot and pace gait pat-
terns, they should quickly change the position of the legs
diagonally or symmetrically to maintain dynamic stability.
This type of movement of the quadruped robots is similar
to the movement of two-legged robots with high-speed lo-
comotion, in which at any moment, there is only one foot
on the ground as a support foot. When feet collide with the

ground, the dynamics of the quadruped robots change. In

|

Forward leg
hits ground

Free-flight Backward leg —»| Free-flight
hits ground

Figure 35: Quadruped running sequence in a bounce gait.



this case, the motion dynamics of the quadruped robots can
be demonstrated as a switching system shown in Fig.[T5]

6. Stabilisation of mechanical systems with hybrid dynam-
ics

In this section, a general control framework with finite-time
stability property is proposed for the introduced hybrid La-
grangian systems (@2)), which can be applied to both classes of
non-prehensile juggler systems and biped robots. The control
method is designed based on zero dynamics and the integral
sliding mode approach. The centralised controller must drive
the output function of the system to zero in finite time.

6.1. Zero dynamic based integral sliding mode controller de-
sign
The continuous part of the hybrid system (@2)) can be written
as
4= f(q.9) + n(qu, (49)

where f(q,4) = ~M~'(q)(C(q.9) + 80(9)), n(q) = M~'(¢), and
u = Br. For systems (@9), let g € P be a set of generalised
coordinates. The output of the system [@9) is defined as

y=hq) =q—ha), (50)

where hy(6) € R” is the desired trajectory vector and 6 € R™
is the parameter vector of the desired trajectory. Adding the
velocities ¢ € Q to the configuration variables gives the zero
dynamics manifold as

: . Oh,
Z={@cPQ|y=h@=0.5=73q=0] 6
By using the standard Lie derivative notation (Westervelt et al.
(2007)), direct calculation produces the following relations

d|y] | hg 0,
a H - [Lih@} * [L,,th@] " 62
where .
h(q) = Lyh(q) + Lyh(q)u, (53)
Lyh(g) = 0,. (54)

Define ¢, = h(q) € R" and e, = h(q,§) € R". Furthermore,
define an integral sliding surface as

!
s=e,+ f (Kev [e,]” + Ko, [ex]ﬁ) dr, (55)
0
where K, € R™ and K, € R™" are two positive def-
inite diagonal matrices, 0 < a,8 < 1, and [e,]"
blockdiag(levI |, ..., |evn|")sign(ev).

Theorem 1. For the sliding surface (33) and in sliding-mode
condition, the output y = h(q) and its time derivative become
zero. The introduced zero dynamic manifold (51) can be thus
obtained.
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Zero dynamic
sliding mode
controller

Hybrid dynamics
of juggler/biped
robot

Integral sliding
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| —»

Trajectory/gait
planner ? —‘

Figure 36: The devised control system for mechanical systems with hybrid
dynamics.

Proof. When the controller puts the system into the sliding
mode (i.e., s(f) = 0,), from the sliding dynamics s(t) = 0,,
the following result can be extracted

€x = €y,
56
{év =-K,, [ev]a - K., [EX]ﬁ' o
Consider the Lyapunov function candidate as
V= Lore, o ! Zn:k le Pt (57
co2 B+1 4 N

Taking its time derivative along the sliding dynamics (56)) yields

n
V, = —e'K, [e,]" — el K, [e.] + Z éxke, sign(ey)le,,l’

-1 (58)
a+l a+l

= —el K, [e,]” < 27 Lpin(K. )V, ? .
VE
In (38), when r — (to + — ? (t0)
zTﬂmin(Kev)(l - a’)

0,. This means that the velocity tracking error converges to the
origin in a finite time. Substituting e, = 0 in (36)) gives

), then e, —

€x = On,
é, =K, [e.].

Assume that e, converges to a nonzero constant vector. Then,
from (9), we have ¢, # 0,. In this case, e, deviates from
the origin and this assumption contradicts the obtained result.
Therefore, finite time convergence property of e, leads the con-
vergence of e, to the origin in a finite time. O

(59)

Time differentiating (53)) and using yield the following
sliding surface dynamic

§ =9+ Ko, [71 + Ke, Y’ = L3n(q) — ha(0) + Ly Lyh(q)u

. (60)
+ K, [Lih(q) — ha®)]" + K. [ .

The proposed robust integral sliding mode control law has the
following structure

w = (LyLh(@) [7a®) = B3h@) = KelLsh(@) - ha®)]" o)

- Ko@)l | - Kusigns),

where K; € R™" is a positive definite matrix. The block dia-
gram of the closed-loop system containing the proposed control



Figure 37: Schematic representation of a two-link walker on an inclined surface
with slope ¢ > 0.

is illustrated in Fig. [36] Note that, before applying the input-
output linearization-based control law to any Lagrangian
system, its relative degree should be checked first, and the term
L, L¢h(q) should be invertible. Under this condition, the control
law (61) is realizable for that application.

Theorem 2. Consider the dynamic of the sliding surface (60),
the proposed centralised control law (61), and the results of
Theorem 1, in which the zero dynamic manifold can be obtained
under the sliding mode condition and with finite-time conver-
gence property. If there exist two K-class functions w, and ws,
some constants i € (0,1), p > 0, and « € (0, 1), and a locally
Lipschitz continuous function V(s), such that

wi(lIsl) < V(s) < wa(lslD, (62)
V(s) < uVv(s), (63)
V(s) < —¢VX(s), 1 # 1y, (64)

then, the system @2)) is finite-time stable under any impact se-
quences.

Proof. Substituting the control law into yields

§ = —Ksign(s). (65)
Select the following Lyapunov function candidate
17
V(s) = Es s. (66)

Differentiating (66) along the sliding surface dynamic (63)
yields

V = —sTK,sign(s) < = V2, (K,)V". 67)

Therefore, the system (@2)) without impact effects (@9) is finite-
time stable. The settling-time, depending on the initial state
5(0), is obtained by

< V2V03(s(0))

s S 68

/lmin(Ks) ( )
Integrating both side of (67), from £ to ¢, yields

VO3(s) < VO3(50) = V2uin(K )1, Vi€ li0,).  (69)
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When #; > ¢, itindicates that the solution s(z) is free of impulse.
In this case, it is clear that V(s(r)) < V(sp), Yt € [f, 1], and
V(s(¢)) = 0 for all ¢ > ¢, (Michel and Hu, [1999). When #; < 1,
assume that there are n impulsive points on the interval [y, z,],
ie, fy <t <..<t, <t; Then, in view of i € (0, 1), it is easy
to derive that

VO3(s) < VO3(s50) = V24un(K)t, Vi€ ltj,tj51),  (70)

for j = 0,1,...,n. It implies that V(s(r)) < V(sg), V(s(t)) <
V(so), Yt € [1o, 5], and V(s(r)) = O for all ¢ > ¢,. For any € > 0,
choose 6 > 0 such that w;(d) < w;(e). Then, any sp, |s0|< §
implies that |s(?)|< € for ¢ € [0, t,], and s(t) = O for ¢ > #,. This
indicates that the system (@2) is finite-time stable when subjects
to sequences of impacts. O

6.2. Simulation results

In this section, the efficiency of the proposed control algo-
rithm will be evaluated with implementation on ball-playing
juggler robots with three degrees of freedom (Fig. [6) and on
a two-link walker.

The schematic structure of the employed two-link walker is
shown in Fig. The geometrical parameters and the details
of the dynamic equations of the juggler robots and the two-link
walker are given by [Farid and Ruggiero| (2022) and |Farid and
Ruggiero| (2021), respectively. The sliding surface gains and
control parameter are selected as K,, = 2.5Iy, K, = 12.5I9,
K, = 2.5y (for the juggler robot) and K, = 5L, K., = 251,
K, = 5I, (for the two-link walker). The closed-loop sys-
tems containing the dynamics of two robots, the proposed
controller, trajectory/gait planner were implemented in MAT-
LAB/Simulink. Differential equations were solved using the
RungeKutta algorithm with a sampling time of 1073 s.

Figures [38] and [39] show the profiles of the desired and mea-
sured angular positions of the joints. It can be observed that the
measured angles track the desired trajectories precisely in a fi-
nite time. Figures 40| and |4 1| show that the ball-playing juggler
systems and two-link biped robot have Zeno behaviours (Wen-
del and Ames| (2010)), i.e., the position and velocity variables
converge to the desired trajectories. Their phase-space has sta-
ble behaviours as their desired phase spaces. Control efforts of
two robotic systems are plotted in Fig. 2] and Fig. Notice
that the control signals do not have any chattering-free and con-
tinuous behaviour, and only in impact times, spike-like signals
with short amplitudes appear.

7. Conclusion

In this research work, the similarities between non-prehensile
object manipulation and dynamic walking of biped robots have
been discussed. In this direction, the basic concepts related to
non-prehensile object manipulation, especially juggling tasks,
the hybrid nature of juggler robot dynamics and biped robots,
ZMP stability, and non-prehensile dynamic grasping condi-
tions, were studied. Then, we proposed the duality of non-
prehensile dynamic object manipulation and dynamic biped
walking. We found that the behaviour of a two-link walker is
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Figure 38: Desired, blue line, and measured, red dashed line, angular joint
positions of the first juggler robot: (a) hg, (#) and g1, (b) ha,(6) and g2, and (c)
hay(6) and g3.
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Figure 39: Desired, blue line, and measured, red line, joint angles of the two-
link biped robot: (a) /g, (6) and ¢, and (b) Ay, (0) and g.

very similar to the corresponding non-prehensile object manip-
ulation system. Also, we extracted that the dynamic grasp in
the catching phase of juggling systems and stability condition
in the support phase of biped robots share similar sets of equa-
tions. Besides, we adapted a common throwing model for these
systems. We exploited a unified control system framework for
biped and juggler robots in terms of similarity of dynamic be-
haviour in impact conditions. After finding a general class of
hybrid dynamic equations for juggler and biped robots, a com-
mon control framework based on zero dynamic concept and in-
tegral sliding mode approach was proposed. Simulation studies
on walking control of the two-link walker and a three-degree-
of-freedom ball-juggling robot proved that the proposed control
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Figure 40: Phase portraits of the desired, blue line, and measured, red line,
states of the first juggler robot.
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Figure 41: Phase portrait of g — ¢; for the two-link walker: the red line is the
desired phase-space, while the blue line is the measured phase-space.

algorithm is efficient and can be implemented on real robots
with hybrid dynamics.

In future work, we plan to focus on increasing the agility
property of the point-foot biped robots in high-speed manoeu-
vres inspired by juggling actions with impact, such as table ten-
nis playing robots. Then, new running stability criteria will
be defined for the biped robots with hybrid dynamics. Also,
the similarity of robust biped locomotion on unexplored ter-
rain and two fingertips juggling an object with an unknown
shape will be investigated. This case study will formulate three
nonlinear optimization problems for catching, stabilization, and
throwing phases. Dynamic uncertainty and unknown object dy-
namic and environment characteristics will be considered. Pre-
senting high-speed (fast) solvers for these three optimization
problems will be a significant challenge. Implementing the ex-
tracted algorithms on real juggler and biped robots will be part
of our work. Besides, the juggling tasks can be performed at
a wide range of speeds and impacts, which makes gathering
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Figure 42: Control efforts of the joints of the first juggler robot: (a) 71, (b) T2,
and (¢) 13

r (a) ‘ I ‘ ‘ ‘ Joinlll torque
) 1

7 8

100

un

Joint torque (Nm)

0

[

2 3 4

Joint2 torque 4

{TTTTTTT

Jomt torque (Nm)

-100 t .
0 1 2 3 6 7 8

t(s)

Figure 43: Control efforts of two-link walker: (a) 71, and (b) 72

a comprehensive set of experiences. For instance, this under-
standing could be very helpful in developing artificial learn-
ing algorithms for biped walking/running. Finally, more gen-
eral approaches based on creating and in-turn stabilizing low-
dimensional manifolds through orbital stabilization of systems
with two and more passive degrees of freedom can be employed
to explore further connections (Stre et al.| 2021} [Shiriaev and
Freidovich, [2009).
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