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Abstract: This paper presents a robust control strategy for controlling the flight of a passively 1

(fixed) tilted hexarotor unmanned aerial vehicle (UAV). The proposed controller is based on a robust 2

extended-state observer to estimate and reject internal dynamics and external disturbances at run- 3

time. Both stability and convergence of the observer are proved using Lyapunov-based perturbation 4

theory and an ultimate bound approach. Such a controller is implemented within a highly realistic 5

simulation environment that includes physics motors, devising an almost transparent behaviour 6

with respect to the real UAV. The controller is tested for flying under normal conditions and in the 7

presence of different types of disturbances showing successful results. Furthermore, the proposed 8

control system is compared against another robust control approach, presenting a better performance 9

regarding the attenuation of the error signals. 10

Keywords: Passively tilted hexarotor; Robust UAV control; Active disturbance rejection Control; 11

Sliding-mode extended-state observer 12

1. Introduction 13

The increasing use of multirotor unmanned aerial vehicles (UAV) in a broad set of 14

applications demands, in some cases, the use of 6-degree-of-freedom (DOF) motions. In 15

other words, simultaneous translational and rotational motions are required. For the case 16

of quadrotors, 6-DOF actuation is not possible since they have only four actuators placed in 17

a flat (co-planar) configuration. Increasing the number of rotors in such a flat configuration 18

does not change the situation, even though they can cope with some actuation faults. 19

Adding a tilting angle to the rotors produces forces so that the drone becomes a fully 20

actuated device within the 6-DOF Cartesian space. Such a tilting angle can be either fixed 21

(passive) or actuated by an auxiliary motor (active). 22

Besides external disturbances, such as vortexes, wind gusts, or payload that might 23

affect a UAV, another significant drawback often present when controlling real devices is the 24

uncertainty about the parameters of the system’s dynamic model. Thus, a control problem 25

for passively tilted hexarotors is to fly to the target pose or trajectory with respect to the 26

world reference frame and to remain steadily within some desired tolerances about them 27

despite the external disturbances and inaccuracy of the dynamic model. In this context, 28

control researchers and engineers have developed robust techniques to deal with dynamic 29

systems’ disturbances and uncertainties, and the UAVs’ case is not an exception. 30

Several robust controllers for both tilted and non-tilted hexarotors can be found in 31

the literature. In addition to PID-type controllers for non-tilted hexacopters [1,2], another 32

common control technique for flat hexarotors is the Active Disturbance Rejection Control 33

(ADRC)-type approach. The advantage of using these last controllers is that they can 34

deal with external disturbances and do not depend on an accurate dynamic model. There 35

are plenty of recently-reported successful regulation and tracking simulations using this 36

control approach –or its variations–, which is applied to both non-tilted and actively tilted 37
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hexarotors [3–7]; nevertheless, the closed-loop stability is only proved in [3,4] and the 38

observer’s convergence proof is only present in [3]. It is worth remarking that in [3,4], the 39

ADRC stability proof relies on the a priori assumption that the total disturbance is bounded, 40

which is not applicable to fully actuated multirotor UAVs as is later explained in the text. 41

On the other hand, extensive literature with successful simulations is also available 42

for robust control of passively tilted hexarotors. Robust integral of the sign of the error 43

(RISE) [8], integral sliding mode control (SMC) [9], adaptive SMC [10], and super twisting 44

observer SMC [11] techniques are also reported. It is worth mentioning that these control 45

schemes are enhanced versions of the SMC to reduce its intrinsic chattering effect. Fur- 46

thermore, an adaptive control scheme was also presented in simulation [12]. Although 47

this last technique is robust upon parametric uncertainties, it is still susceptible to ex- 48

ternal disturbances. To the best of the authors’ knowledge, the only robust controllers 49

reported in the literature that were implemented in actual passively tilted hexacopters are 50

port-Hamiltonian-based approaches [13,14]; these passivity-based techniques suffer from 51

time-varying parametric uncertainties and non-smooth disturbances. 52

In the context of disturbance compensation of multirotor UAVs, the following prob- 53

lems have been found so far. i) The use of a tilting angle for the rotors helps to produce 54

6 DOF Cartesian motion; however, a significant drawback of actively tilting the rotors, 55

despite the hardware implications, is that the actuator dynamics delay the instantaneous 56

disturbance rejection [15]. ii) ADRC-type techniques are robust external disturbances 57

estimation and compensation tools. Their main drawback is that the theory assumes that 58

there exist bounds for the total disturbances, which are compound by external wrenches 59

and internal terms of the plant that are different from a cascade of integrators representa- 60

tion [16]. Such an assumption does not hold for the case of fully actuated multirotors, since 61

state-dependent disturbances present in the model cannot be assumed bounded. 62

This work addresses the robust flight problem of a passively tilted hexarotor. In order 63

to deal with external disturbance and uncertainty, a robust control approach is imple- 64

mented. Such a proposal falls within the ADRC category since it rejects the disturbances 65

by estimating and compensating for them using a proposed sliding-mode extended-state 66

observer (SMESO). In addition, the observer’s stability and convergence are proved using 67

Lyapunov-based perturbation theory and an ultimate bound approach. The developed 68

controller is implemented on a custom hexarotor model1, adequately adapted to have tilted 69

rotors and that runs within Gazebo2, a 3D simulator with physics motors which is almost 70

transparent with respect to the real version of such a UAV. Both the controller and the 71

robust ESO are executed as nodes of the Robotics Operating System (ROS) middleware3, 72

which allows the simultaneous execution of such algorithms. The experiments to test 73

the developed controller consisted of i) performing a given trajectory; ii) feeding target 74

poses to the UAV such that it flights under wind conditions and payload provided by the 75

simulator; and iii) carrying out a comparison against an SMC for pose regulation. The 76

contributions of this work are listed below. 77

• The application of the ADRC to a passively tilted hexarotor has not been reported 78

up to the best authors’ knowledge. The closest related works use actively tilted or 79

fixed hexarotors, which are disadvantaged in actuation and disturbance rejection 80

capabilities with respect to passively tilted hexarotors. Furthermore, our version of 81

the ADRC technique is enhanced with a sliding-mode observer, whose advantages 82

are mentioned later in the text. 83

• Both the controller and observer stability analyses are presented. The implementation 84

of a SMESO based ADRC algorithm in a passively tilted hexarotor is novel in the 85

literature up to the best authors’ knowledge; furthermore, the stability proof of the 86

1 This model is available at the following repository:
https://github.com/jocacace/Firmware.

2 http://gazebosim.org
3 http://www.ros.org

https://github.com/jocacace/Firmware
http://gazebosim.org
http://www.ros.org
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presented ADRC does not depend on a priori assumptions of the boundaries of the total 87

disturbance as the traditional ADRC scheme requests, but only in its differentiation 88

properties. 89

• Our controller is implemented in a highly realistic simulation environment, completely 90

different from a traditional numerical simulation. This is a step towards the successful 91

implementation on a real device since our simulation scheme is almost transparent 92

with the real version of the platform. Additionally, our results are shown in a video. 93

• The comparison against another robust control and observation strategy favours the 94

controller developed in this work. The proposed design is indeed a competitive 95

alternative to control passively tilted hexarotors UAVs, and it is not limited to the 96

presented specific problem. The proposed controller applies to other passively-tilted 97

multirotors by selecting the appropriate allocation matrix, tuning both the controller 98

and observer gains, and adjusting the integration steps. 99

The rest of the paper is organised as follows. Section 2 addresses the theory of ADRC, 100

sliding mode observers and finding bounds for state-dependent disturbances; the dynamics 101

of the hexarotor UAV is presented as well in that section. Section 3 details the controller 102

design and stability. Section 4 describes how the controller is implemented. The case 103

studies are presented in 5 and finally, Section 6 concludes the paper. 104

2. Theoretical Background 105

ADRC is a control technique in which success relies on estimating and rejecting an 106

unknown total disturbance using an ESO. In this case, a nonlinear control problem is 107

reduced to a cascade of integrators one. Therefore, this control technique can deal with a vast 108

range of uncertainties and disturbances [16]. Below, an overview of the mentioned control 109

approach and a robust observation scheme can be found. As stated before, ADRC’s theory 110

rely on a priori assumptions of the existence of boundaries for the disturbances affecting the 111

controlled system. For the case of external disturbances, such assumptions are reasonable; 112

however, state-dependent disturbances cannot be assumed bounded. Hence, some useful 113

theorems retrieved from the literature that are beneficial for the derivation of the stability 114

proofs are also addressed in this section. 115

2.1. Active Disturbance Rejection Control 116

Consider the following multiple-input multiple-output (MIMO) uncertain nonlinear
system subjected to external disturbances [17], which is expressed in a chain of integrators
canonical form4 

ẋi,1(t) = xi,2(t)
ẋi,2(t) = xi,3(t)

...
ẋi,ni (t) = ςi(x(t)) + ξi(x(t))u(t) + ζi(t)
yi(t) = hi(x(t))

(1)

with i = 1, . . . , m, and where xi,j(t) ∈ R is a component of the vector state x(t) =

[x1,1(t) · · · x1,n1(t) · · · xm,1(t) · · · xm,nm(t)]
T ∈ R(n1+···+nm), with j = 1, . . . , ni

and ni > 0; yi(t) ∈ R is the i−th output component; u(t) =
[
u1(t) · · · um(t)

]
∈ Rm

is the control inputs vector; ς(x(t)) =
[
ς1(x(t)) · · · ςm(x(t))

]T ∈ Rm is the dynamics
function with uncertain parameters; ξi(x(t)) ∈ R1×m is the row of a non singular uncer-
tain matrix Ξ ∈ Rm×m depending on the system’s state; hi(x(t)) ∈ R is a function of the
states; and ζ(t) =

[
ζ1(t) · · · ζm(t)

]T ∈ Rm is the external disturbances vector, usually
unknown but bounded. In order to reduce (1) to a chain of integrators regulation problem,

4 If the system is not represented as a chain of integrators canonical form, the corresponding transformations
must be performed to lead the system to such a form.
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the whole uncertain dynamics and the external disturbances can be embedded into the
following total disturbance [16]

ς(x(t)) + ∆Ξ(x(t))u(t) + ζ(t) ≜ x(t)n+1, (2)

where ∆Ξ(x(t)) = Ξ(x(t))− Ξ̃(x(t)) and Ξ̃(x(t)) ∈ Rm×m is an approximation5 of Ξ(x(t)).
The vector x(t)n+1 =

[
x1,n1+1 · · · xm,nm+1

]
∈ Rm is a virtual augmented state whose esti-

mate x̂(t)n+1 ∈ Rm contain all the total disturbances and it can be retrieved through the
following ESO [17] 

˙̂xi,1 = x̂i,2 + εni−1ϕi,1

(
xi,1 − x̂i,1

εni

)
˙̂xi,2 = x̂i,3 + εni−2ϕi,2

(
xi,1 − x̂i,1

εni

)
...

˙̂xi,ni = x̂i,ni+1 + ϕi,ni

(
xi,1 − x̂i,1

εni

)
+ Ξ̃(x(t))u(t)

˙̂xi,ni+1 =
1
ε

Φi,ni+1

(
xi,1 − x̂i,1

εni

)
(3)

where x̂i,j(t) ∈ R is a component of the vector state estimate

x̂(t) =
[
x̂1,1(t) · · · x̂1,n1(t) · · · x̂m,1(t) · · · x̂m,nm+1(t)

]T ∈ R(n1+···+(nm+1)),

with j = 1, . . . , ni and i = 1, . . . , m; ε > 0 is a tuning constant, and ϕi,j(·) ∈ R, with
j = 1, . . . , ni + 1, is a function that guarantees xi,1 − x̂i,1 → 0 as t → t0, with 0 < t0 < ∞
is a determined finite time. Notice that the dynamics of (3) must be significantly quicker
than (1). Once the total disturbance is estimated, it can be used as feedback in the following
controller for the system (1)

u(t) = Ξ̃(x(t))−1u0(x(t))− x̂(t)n+1, (4)

where u0(x(t)) ∈ Rm can be any linear control technique that regulates ẋ(t). Since (4)
cancels out both internal uncertainties and external disturbances, it leads to the following
control problem

ẋ(t) ≃ u0(x(t)). (5)

2.2. Sliding Mode Observers 117

As it was mentioned before, the success of the controller (4) relies on the accurate
estimation of the total disturbance (2) via the ESO. Hence, the key functionality of the ADRC
is the observer. A common technique to develop an ESO is using a Luenberger observer.
However, to enhance the ESO performance, some robust techniques like generalized
proportional integral (GPI) observer and high gain observers were implemented in the
literature [18,19]. Variable structure systems, including sliding mode approaches, are
well known as very robust techniques. Sliding mode observers (SMO) have the same
advantages of robustness upon uncertainty and disturbances as those of the SMC, but with
the advantage that the so-called chattering effect is not present physically in the observed

5 In the context of this paper, the UAV’s approximated total mass and geometry can be useful to determine the
numerical values of Ξ̃(x(t)).
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system [20]. The central idea of the SMO is that, given an uncertain nonlinear system the
following form [21]

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)
...

ẋn(t) = f (x(t), u(t)),

with x(t) =
[
x1(t) · · · xn(t)

]T ∈ Rn, u(t) ∈ R, and f (·, ·) ∈ R, it is possible to estimate
its states using the single measurement available x1(t) by means of the following set of
discontinuous functions

˙̂x1(t) = λ1e1(t) + x̂2(t) + k1sign(e1(t))
˙̂x2(t) = λ2e1(t) + x̂3(t) + k2sign(e1(t))

...
˙̂xn(t) = λne1(t) + f̂ (x(t)) + u(t) + knsign(e1(t))

(6)

where x̂(t) =
[
x̂1(t) · · · x̂n(t)

]T ∈ Rn is the estimation state vector, e1(t) = x1(t) − 118

x̂1(t) ∈ R is the observation error, k1, k2, . . . , kn ∈ R are tunable gains, and f̂ (·) ∈ R is 119

an average estimation of f (·, ·) produced by the high frequency sliding mode [21]. The 120

constants λi ∈ R, with i = 1, . . . , n, determine the performance of the observer before the 121

sliding mode occurs at e1 = 0 [22]. The estimation f̂ could be recovered and used within 122

an ADRC scheme through an appropriate low-pass filtering stage. Nevertheless, such a 123

stage would introduce phase lag, and the number of tuning parameters for the overall 124

control-observer system would increase. Thus, the use of a sliding-mode extended-state 125

observer (SMESO) is proposed in this work to robustly estimate the total disturbance 126

(2) [20], exploiting the advantages of the SMO and the ESO, but avoiding the low pass 127

filtering and linear observation drawbacks. 128

2.3. Stability and Ultimate Boundness Conditions for Perturbed Systems 129

This subsection addresses the problem of determining stability and ultimate bounds
for exponentially stable nonlinear systems affected by vanishing and/or non vanishing
perturbations. This is useful when part of the system dynamics is uncertain or is treated as
a disturbance, for instance, when additive terms arise from a linearization [23,24]. Consider
a nonlinear system with disturbances

ẋ = f(t, x) + d(t, x) (7)

where x ∈ D is the state vector, D = {x ∈ Rn, ∥x∥ < ρ}, ρ > 0, f(t, x) : [0, ∞)×D → Rn
130

is the system dynamics and d(t, x) : [0, ∞) × D → Rn contains the disturbances; both 131

are locally Lipschitz in x and piecewise continuous in t. Such a representation is always 132

possible for uncertainties that do not change the system’s order [24]. Assuming that (7) 133

has an asymptotically stable equilibrium in x = 0n, with 0n ∈ Rn the zero vector of 134

proper dimension, when d(t, x) = 0n, the goal is to study whether the stability of (7) is 135

affected when d(t, x) ̸= 0n. In this context, two cases may arise: d(t, x) is vanishing or non 136

vanishing. In the former case, d(t, 0n) = 0n, the equilibrium is still the origin; whereas, in 137

the latter case, d(t, 0n) ̸= 0n, the equilibrium is not the origin anymore, but an ultimate 138

bounded solution can be found [24]. The following result from the literature is useful to 139

study the aforementioned stability problems. 140
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Lemma 1. [24, Chap. 5] Let the origin be an exponentially stable equilibrium of the system (7)
with d(t, x) = 0n. Let V(t, x) be a Lyapunov function satisfying

c1∥x∥2 ≤ V(t, x) ≤ c2∥x∥2, (8a)

∂V
∂t

+
∂V
∂x

f(t, x) ≤ −c3∥x∥2, (8b)∣∣∣∣∣∣∣∣∂V
∂x

∣∣∣∣∣∣∣∣ ≤ c4∥x∥. (8c)

Suppose now d(t, x) ̸= 0n and that there exist scalar constants c6 > 0 and 0 < c7 < 1 such that

∥d(t, x)∥ ≤ c6 <
c3

c4

√
c1

c2
c7ρ, ∀ t ≥ 0, ∀ x ∈ D. (9)

Then, the solution x(t) of (7) satisfies

∥x(t)∥ ≤
√

c2

c1
exp

[
− (1 − c7)c3

2c2
(t − t0)

]
∥x(0)∥, ∀ t0 ≤ t < t1 (10a)

and

∥x(t)∥ ≤ c4c6

c3c7

√
c2

c1
, ∀ t ≥ t1. (10b)

In other words, the solution x(t) is uniformly ultimately bounded. 141

Proof of Lemma 1. See Lemma 5.2 in [24]. 142

2.4. Dynamics of omnidirectional multirotor UAVs 143

Consider a fixed world frame FW = OW , {xW , yW , zW} and the body frame of the 144

hexarotor Fb = Ob, {xb, yb, zb} which is attached to its center of mass (CoM), and six 145

coordinate frames FSi = OSi ,
{

xSi , ySi , zSi

}
, i = 1, ..., 6, attached to each propeller of the 146

Figure 1. Hexarotor with tilted propellers and reference frames. OW is the world reference frame and
OB is the airframe coordinate frame. OSi is the coordinate frame of the i−th propeller.
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hexarotor [25]. All these frames are illustrated in Figure 1. The pose of the airframe respect 147

to FW is represented by 148

pb =
[
x y z

]T ∈ R3, (11a)

ηb =
[
ϕ θ ψ

]T ∈ R3, (11b)

where x, y, z ∈ R are the translational motion Cartesian coordinates representing the
position of Fb in FW and ϕ, θ, ψ ∈ R are the Euler orientation angles about xb, yb, and zb,
respectively. The orientation of Fb respect to FW is given by the rotation matrix Rb ∈ SO(3),
whose expression is given below

Rb(ηb) =

cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ

sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ

−sθ cθsϕ cθcϕ

, (12)

where c(·) ≜ cos(·) and s(·) ≜ sin(·). Let ṗb ∈ R3 denote the absolute translational velocity
of the UAV expressed in FW , while η̇b ∈ R3 is the time derivative of ηb. Then, the dynamics
of an omnidirectional multirotor UAV can be written as [26]:

mp̈b = mge3 + Rb(ηb)u f + fu(·), (13a)

M(ηb)η̈b = −C(ηb, η̇b)η̇b + Ω(ηb)
Tuτ + τu(·), (13b)

where m > 0 is a scalar denoting the total mass of the UAV, g is a scalar representing the
gravity acceleration, e3 = [0 0 1]T , u f , uτ ∈ R3 are the control forces and torques vectors
respectively, fu(·), τu(·) ∈ R3 represent the external forces and torques respectively,

Ω(ηb) =

1 0 −sθ

0 cϕ cθsϕ

0 −sϕ cθcϕ

,

M(ηb) ∈ R3×3 = Ω(ηb)
T IbΩ(ηb) with Ib ∈ R3×3 representing the inertia tensor of the

UAV and

C(ηb, η̇b) ∈ R3×3 = Ω(ηb)
T [Ω(ηb)η̇b]× IbΩ(ηb) + Ω(ηb)

T IbΩ̇(ηb),

with [·]× denoting the skew symmetric matrix. Considering the state x̄ = [pT
b ηT

b︸ ︷︷ ︸
x1

ṗT
b η̇T

b︸ ︷︷ ︸
x2

]T ,

the dynamics (13a)–(13b) can be rewritten as:

˙̄x = Ax̄ + Bu +

[
06

δ1(ηb, η̇b, g) + δ2(·)

]
, (14)

where

A ∈ R12×12 ≜
[

O6×6 I6×6
O6×6 O6×6

]
, B ∈ R12×6 ≜


O6×6︸ ︷︷ ︸

B1[
mI3×3 O3×3
O3×3 M(ηb)

]−1[Rb(ηb) O3×3
O3×3 Ω(ηb)

]
︸ ︷︷ ︸

B2

,

where On×m ∈ Rn×m is the zero matrix of proper dimensions, In×m ∈ Rn×m is the identity
matrix of proper dimensions, u = [uT

f uT
τ ]

T is a six-dimensional control vector,

δ1(ηb, η̇b, g) ∈ R6 ≜ B−1
2

[
−geT

3 (−C(ηb, η̇b)η̇b)
T]T (15)
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is the vector containing gravity and Coriolis effects (that is considered as a disturbance 149

term), and δ2(·) ∈ R6 ≜
[
fu(·)T τu(·)T]T is the lumped vector of disturbances, including 150

both external effects and the net term caused by parametric uncertainty. The term δ2(·) is 151

typically unknown but bounded, ∥δ2(·)∥ ≤ γδ2 < +∞, and differentiable or at least with a 152

removable discontinuity such that its time derivative is also bounded, ∥δ̇2(·)∥ ≤ γδ̇2
< +∞. 153

The following assumptions can also be done about (14): 154

A1. The aerial vehicle does not pass through singularities [26]. Besides, it moves using 155

the thrust incoming from the tilted propellers rather than changing its orientation to 156

generate a thrust to move horizontally. In addition, it takes off in with zero roll and 157

pitch, and it is desired to maintain such values. Thus, the matrix B2 can be considered 158

invertible. 159

A2. Since B2 is invertible within some range and its norm is bounded6, then C(η, η̇) is
Lipschitz continuous and it does not grow faster than its arguments [27]. Hence, the
following bounds hold

∥δ1(ηb, η̇b, g)∥ ≤ γδ1 (16)

∥δ̇1(ηb, η̇b, g)∥ ≤ γδ̇1
, (17)

with γδ1 , γδ̇1
> 0. 160

3. Controller Design 161

3.1. Control problem 162

Consider the passively-tilted hexarotor dynamics (14). The control problem is to lead
[xT

1 xT
2 ]

T ∈ R12 to the desired set-point or trajectory [xd
1

T
xd

2
T
]T ∈ R12 despite the affecting

disturbances. An appropriate solution is

u = B−1
2 [v − δ1(ηb, η̇b, g)− δ2(·)], (18)

where v ∈ R6 is a virtual linear control input that can be shaped through any pole placement
technique, for instance

v = K
[

x̃1
x̃2

]
, (19)

where [
x̃1
x̃2

]
∈ R12 =

[
xd

1
xd

2

]
−

[
x1
x2

]
is the error signal and K ∈ R6×12 is a constant gain matrix. For the ideal case when 163

the dynamics of the UAV are completely known, all the states are measurable and the 164

external disturbances are absent (i.e., δ̇2(·) = 06), the controller (18) is enough to solve the 165

control problem, since δ1(ηb, η̇b, g) is also known. On the other hand, external disturbances 166

δ2(·) are usually unknown but bounded. Hence, when the UAV is affected by them, a 167

control action to compensate for their effect is required. Below, rejecting disturbances 168

affecting (14) is explained: the technique consists of estimating and compensating online 169

the total disturbance using a robust extended-state observer. The following two cases are 170

presented: the former considers the external disturbance rejection via an extended-state 171

observer and perfect cancellation of δ1(·); in the latter, such a vector is estimated as well. 172

3.2. External Disturbances Rejection Via Extended-State Observer and Perfect Cancellation of 173

System Nonlinearities 174

Usually, the ADRC theory requests the knowledge of some boundaries for the total
disturbance lumped within an additional state from the original system. In such a case,

6 Such a matrix is composed of the mass matrix, which is bounded for mechanical systems, a rotation matrix
and Ω(·) whose norms are bounded because they are composed of sines and cosines terms.
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several types of extended-state observers have been implemented, including, recently,
sliding mode approaches. For the case of the passively tilted hexarotors, this theory has
not been applied. The closest works are about ADRC applied to coplanar (non-tilted)
hexarotors [3,4], but the convergence of the observers is missing. Below, the convergence
of sliding-mode extended-state observer and the ADRC based on such an observation
technique are presented. For control design, the fully actuated multirotor UAV subjected to
external disturbances in (14) can be rewritten in the following extended-state form

ẋ1 = x2,
ẋ2 = B2u + δ1(ηb, η̇b, g) + x3,
ẋ3 = δ̇2(·).

(20)

Assuming an accurate knowledge of the parameters of the UAV dynamics (20) and an
accurate measure of x1 and x2

7, a controller that satisfies set-point regulation and tracking
is the following ADRC

u = B−1
2

[
v − δ1(ηb, η̇b, g)− x̂3 + ẋd

2

]
, (21)

from which x̂3 can be retrieved through the following robust SMESO
˙̂x1 = x̂2 + ε−1(x1 − x̂1) + k1sign(x1 − x̂1)
˙̂x2 = x̂3 + ε−2(x1 − x̂1) + k2sign(x1 − x̂1) + B2u + δ1(ηb, η̇b, g)
˙̂x3 = ε−3(x1 − x̂1) + k3sign(x1 − x̂1),

(22)

where x̂i ∈ R6 contains the estimation of xi, 0 < ε ≪ 1 is a scalar such that the polynomial 175

s3 + ε−1s2 + ε−2s + ε−3 is Hurwitz, and k1, k2, k3 are positive scalars satisfying ε−1 > k3 > 176

k2 > k1 > γδ̇2
. 177

The boundedness of the estimation and the tracking errors are now shown in the 178

following theorems. 179

Theorem 1. The external disturbances δ2(·) are accurately reconstructed by the extended robust 180

SMESO (22), i.e., the observation error ˆ̃x = x − x̂ ∈ R18 is uniformly ultimately bounded. 181

Proof of Theorem 1. Considering (20), the dynamics of the SMESO (22) is

˙̃̂x ≜

 ˙̃̂x1
˙̃̂x2
˙̃̂x3

 =

−ε−1I6×6 I6×6 06×6
−ε−2I6×6 O6×6 I6×6
−ε−3I6×6 O6×6 O6×6


︸ ︷︷ ︸

Ã

 ˆ̃x1
ˆ̃x2
ˆ̃x3


︸ ︷︷ ︸

ˆ̃x

−

k1I6×6 O6×6 O6×6
O6×6 k2I6×6 O6×6
O6×6 O6×6 k3I6×6


︸ ︷︷ ︸

KO

sign( ˆ̃x1)

+

O6×6
O6×6
I6×6


︸ ︷︷ ︸

D1

δ̇2(·).

Considering the linear system ˙̃̂x = Ã ˆ̃x, since Ã is Hurwitz, there exists a symmetric
positive definite matrix P̃1 ∈ R18×18 such that ÃTP̃1 + P̃1Ã = −2I18×18 and hence, a
candidate Lyapunov function V1( ˆ̃x) = ˆ̃xTP̃1 ˆ̃x can be proposed. Notice that such a function
satisfies (8a)

λmin(P̃1)∥x∥2 ≤ V1( ˆ̃x) ≤ λmax(P̃1)∥x∥2.

Besides, the conditions (8b) and (8c) are satisfied with c3 = 2 and c4 = 2λmax(P̃1), respec- 182

tively. 183

7 The vector x2 could be, in principle, estimated.
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Now, considering the full system ˙̃̂x = Ã ˆ̃x − Kosign( ˆ̃x1) + D1δ̇2(·), Lemma 1 must be
followed with the position ρ = +∞. Therefore, the following ultimate bound can be proved

∥Kosign( ˆ̃x1) + D1δ̇2(·)∥ ≤
√

6k3 + γδ̇2
< +∞.

Hence, the solution of the SMESO system satisfies the following bounds

∥ ˆ̃x(t)∥ ≤


√

λmax(P̃1)

λmin(P̃1)
exp

[
− (1 − ϑ1)

λmax(P̃1)
(t − t0)

]
∥ ˆ̃x(0)∥, ∀ t0 ≤ t < t1

b1, ∀ t ≥ t1,

with 0 < ϑ1 < 1 and where

b1 =
λmax(P̃1)

[
γδ̇2

+
√

6k3

]
ϑ1

√
λmax(P̃1)

λmin(P̃1)
.

Notice that the gain k3 is helpful to reduce the ultimate bound for the solutions of ˆ̃x. 184

Theorem 2. The error vector [x̃T
1 x̃T

2 ]
T ∈ R12 ≜ [xd

1
T

xd
2

T
]T − [xT

1 xT
2 ]

T , with ẋd
1 = xd

2, is 185

uniformly ultimate bounded by means of the controller (21). 186

Proof of Theorem 2. Considering (20), the tracking error dynamics is{ ˙̃x1 = x̃2,
˙̃x2 = ẋd

2 − B2u − δ1(ηb, η̇b, g)− x3.

Substituting the controller (21) into the error dynamics yields{ ˙̃x1 = x̃2,
˙̃x2 = −v + x̂3 − x3.

Considering x̂3 − x3 = − ˆ̃x3 then,[ ˙̃x1
˙̃x2

]
=

[
O6×6 I6×6
O6×6 O6×6

][
x̃1
x̃2

]
−

[
O6×6
I6×6

]
v −

[
O6×6
I6×6

]
ˆ̃x3.

Folding (18) into the last expression yields[ ˙̃x1
˙̃x2

]
= A1

[
x̃1
x̃2

]
−

[
O6×6
I6×6

]
ˆ̃x3,

with

A1 =

[
O6×6 I6×6
O6×6 O6×6

]
−

[
O6×6
I6×6

]
K,

and such that K makes A1 Hurwitz. 187

Considering the nominal linear system with ˆ̃x3 = 06, a candidate Lyapunov function
V2(x̃1, x̃2) = [x̃T

1 x̃T
2 ]

TP1[x̃T
1 x̃T

2 ] can be proposed, where P1 ∈ R12×12 is a symmetric positive
definite matrix which is solution of

AT
1 P1 + P1A1 = −2I12×12.

Notice that such a function satisfies (8a)

λmin(P1)∥x∥2 ≤ V2( ˆ̃x) ≤ λmax(P1)∥x∥2.
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Besides, the conditions (8b) and (8c) are satisfied with c3 = 2 and c4 = 2λmax(P1), respec- 188

tively. Besides, the conditions (8b) and (8c) are satisfied with c3 = 2 and c4 = 2λmax(P̃1), 189

respectively. 190

Now, considering the full system with the generic condition ˆ̃x3 ̸= 06, Lemma 1 must
be followed with the position ρ = +∞. The ultimate bound for ˆ̃x3 can be retrieved from
Theorem 1. Thus, the solutions of the tracking error dynamics is uniformly ultimate
bounded by

∣∣∣∣∣∣∣∣[x̃1(t)
x̃2(t)

]∣∣∣∣∣∣∣∣ ≤

√

λmax(P1)

λmin(P1)
exp

[
− (1 − ϑ2)

λmax(P1)
(t − t0)

]∣∣∣∣∣∣∣∣[x̃1(0)
x̃2(0)

]∣∣∣∣∣∣∣∣, ∀ t0 ≤ t < t2

b2, ∀ t ≥ t2,

where

b2 =
b1λmax(P1)

ϑ2

√
λmax(P1)

λmin(P1)
,

and t2 > t1. Notice that the ultimate bound b2 depends directly on b1. 191

3.3. Robust External Disturbances Rejection Via Extended-State Observer 192

In case these disturbances are differentiable in its arguments, locally Lipschitz, or at
least have a removable discontinuity (for the case of external disturbances), an augmented-
state representation for (14) can be used as follows

ẋ ≜


ẋ1 = x2
ẋ2 = B2u + x3
ẋ3 = δ̇1(ηb, η̇b, g) + δ̇2(·).

(23)

A controller that satisfies set-point regulation and tracking is the following ADRC

u = B−1
2

[
v − x̂3 + ẋd

2

]
, (24)

where v is the same as in (19). The difference with respect to (21) is the missing compensa-
tion for the term δ1(·). The estimate of x̂3 can be retrieved through the following robust
SMESO 

˙̂x1 = x̂2 + ε−1(x1 − x̂1) + k1sign(x1 − x̂1),
˙̂x2 = x̂3 + ε−2(x1 − x̂1) + k2sign(x1 − x̂1) + B2u,
˙̂x3 = ε−3(x1 − x̂1) + k3sign(x1 − x̂1).

(25)

The boundedness of the estimation and the tracking errors are now shown in the 193

following theorems. 194

Theorem 3. The disturbances of (20) are accurately reconstructed by the extended robust SMESO 195

(25) despite the missing compensation for δ1(ηb, η̇b, g), i.e., the observation error ˆ̃x = x − x̂ ∈ 196

R18×18 is uniformly ultimately bounded. 197
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Proof of Theorem 3. Considering (23), the dynamics of the SMESO (25) is

˙̃̂x ≜

 ˙̃̂x1
˙̃̂x2
˙̃̂x3

 =

−ε−1I6×6 I6×6 O6×6
−ε−2I6×6 O6×6 I6×6
−ε−3I6×6 O6×6 O6×6


︸ ︷︷ ︸

Ã

 ˆ̃x1
ˆ̃x2
ˆ̃x3


︸ ︷︷ ︸

ˆ̃x

−

k1I6×6 O6×6 O6×6
O6×6 k2I6×6 O6×6
O6×6 O6×6 k3I6×6


︸ ︷︷ ︸

KO

sign( ˆ̃x1)

+

O6×6
O6×6
I6×6


︸ ︷︷ ︸

D1

(δ̇1(g, ηb, η̇b) + δ̇2(·)).

Considering the linear system ˙̃̂x = Ã ˆ̃x, since Ã is Hurwitz, there exists a symmetric
positive definite matrix P̃2 ∈ R18×18 such that ÃTP̃2 + P̃2Ã = −2I18×18 and hence, a
candidate Lyapunov function V3( ˆ̃x) = ˆ̃xTP̃2 ˆ̃x can be proposed. Notice that such a function
satisfies (8a)

λmin(P̃2)∥x∥2 ≤ V3( ˆ̃x) ≤ λmax(P̃2)∥x∥2.

Besides, the conditions (8b) and (8c) are satisfied with c3 = 2 and c4 = 2λmax(P̃2), respec- 198

tively. 199

Now, considering the full system

˙̃̂x = Ã ˆ̃x − Kosign( ˆ̃x1) + D1(δ̇1(ηb, η̇b) + δ̇2(·)),

Lemma 1 must be followed with the position ρ = +∞. Therefore, taking into account (15)
and A2, the following ultimate bound can be proved

∥ − Kosign( ˆ̃x1) + D1(δ̇1(ηb, η̇b) + δ̇2(·))∥ ≤
√

6k3 + γδ̇1
+ γδ̇2

< +∞.

Hence, the solution of the SMESO system satisfies the following bounds

∥ ˆ̃x(t)∥ ≤


√

λmax(P̃2)

λmin(P̃2)
exp

[
− (1 − ϑ3)

λmax(P̃2)
(t − t0)

]
∥ ˆ̃x(0)∥, ∀ t0 ≤ t < t1

b3, ∀ t ≥ t1,

with 0 < θ3 < 1 where

b3 =
λmax(P̃2)

[√
6k3 + γδ̇1

+ γδ̇2

]
ϑ3

√
λmax(P̃2)

λmin(P̃2)
..

200

Theorem 4. The error vector [x̃T
1 x̃T

2 ]
T is uniformly ultimately bounded by means of the con- 201

troller (24). 202

Proof of the Theorem 4. Considering (23), the tracking error dynamics is{ ˙̃x1 = x̃2,
˙̃x2 = ẋd

2 − B2u − x3.

Substituting the controller (24) yields{ ˙̃x1 = x̃2,
˙̃x2 = −v − ˆ̃x3.
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The procedure follows the proof within Theorem 2 and it is not reported here for brevity. 203

However, it is worth noting that the ultimate bound for
∣∣∣∣∣∣∣∣[x̃1(t)

x̃2(t)

]∣∣∣∣∣∣∣∣ now depends on b3 204

from Theorem 3. 205

206

4. Controller Implementation 207

4.1. Control allocation 208

Consider the Figure 2, where the top and frontal views of the tilted multirotor with
six actuators are presented. The position of the i-th propeller in FB can be expressed
mathematically as follows [28]

pb
Si
= LRz(ζi)

[
1 0 0

]T , (26)

where i = 1, ..., n depending on the multirotor, L > 0 is the distance between OSi and

Figure 2. Left: Top view of the tilted hexarotor indicating each rotor spin direction, ωi, the length L
from the CoM of the airframe to the centre of rotation of a rotor, and in this case, ζi = π/3. All the
rotors are equidistant with respect to the CoM and the location angle of each rotor respect to the last
one is the same. Right: Front view of the hexarotor showing two examples of the tilting angles. All
the six rotors are tilted in the same magnitude but in different sense.

OB, and Rz ∈ SO(3) is the canonical rotation matrix around the axis
[
0 0 1

]T [29]. The
orientation of FSi respect to FB is given by [25]

Rb
Si
(α) = Rz(ζi)Rx

(
(−1)i−1αi(t)

)
∈ SO(3), (27)

where i = 1, ..., n, αi(t) ∈ [−π/2, π/2] is the tilt angle of the propellers about xSi , and

Rx ∈ SO(3) is the canonical rotation matrix around the axis
[
1 0 0

]T [29]. For the case
of passively tilting multirotors, α(t)i = αi is considered, and it has the same magnitude
for each propeller, while (−1)i−1 denotes the orientation tilt of each propeller. Figure 2
illustrates the geometric concepts of the length from the propeller to the UAV’s CoM and
the separation angle between each rotor. Furthermore, the spin direction of each propeller
is also displayed, and a front view of the hexarotor is also presented, where the tilting angle
αi about the xSi can be appreciated. Each propeller supplies a thrust force applied in OSi
that, expressed in FB, appears as follow [25]

f = fi Rb
Si
(α)

[
0 0 1

]T ∈ R3, (28)
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where i = 1, ..., 6, fi = k f ω2
i is the intensity of the force provided by the i-th angular velocity

ωi ∈ R, and k f > 0 is a constant parameter depending on the geometry of the propeller
[30]. Simultaneously, the following drag torque is supplied by the propellers [25]

τbi
= (−1)i−1σfbi

Rb
Si
(α)

[
0 0 1

]T ∈ R3, (29)

where i = 1, ..., 6 and σ = kτ/k f , with kτ > 0, is a constant parameter depending on the
geometry of the propeller and (−1)i−1 modelling its spin direction. The total thrust forces
applied to the airframe expressed in FW are represented by [28]

fT = Rb

6

∑
i=1

fbi
= RbF1(α)f, (30)

where α ∈ Rn contains the titlting angle of each rotor, f =
[

f1 · · · fn
]T ∈ Rn is the stacking

vector of the propeller forces, and F1 ∈ R3×n is a mapping matrix from the propeller forces
to the airframe ones. Likewise, the total torques applied to the airframe expressed in FB
are [30]

τT =
6

∑
i=n

((
pb

Si
× fbi

)
+ τbi

)
= F2(α)f, (31)

where × is the cross product operator and F2 ∈ R3×n is the mapping matrix from the
propeller forces to the torques applied to the airframe. Hence, the full allocation matrix is
given by

F(α) = k f

[
F1(α)
F2(α)

]
. (32)

For the case of passively tilted hexarotors it follows that

F1(α) =



sα

2
−sα

sα

2
− sα

2
−sα − sα

2
√

3sα

2
0 −

√
3sα

2

√
3sα

2
0 −

√
3sα

2

cα cα cα cα cα cα


,

F2(α) = k f



Lσα − σsα

2

√
3(Lcα − σsα)

2
−Lsα − σcα

Lcα − σsα 0 Lsα + σcα

Lcα − σsα

2
−
√

3(Lcα − σsα)

2
−Lsα − σcα

− Lcα − σsα

2
−
√

3(Lcα − σsα)

2
Lsα + σcα

−Lcα + σsα 0 −Lsα − σcα

− Lcα − σsα

2

√
3(Lcα − σsα)

2
Lsα + σcα



T

.

Notice that (32) is static and invertible; therefore, the mapping from the six-dimensional
control u (24) to the actuators forces is

fb = F(α)−1u. (33)
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Figure 3. Block diagram of the proposed controller and observer. All within the dashed line is
component-wise for i = 1, 2, ..., 6.

Finally, the rotor velocities can be computed through

ωi =

√
fi
k f

. (34)

4.2. 3D simulation setup 209

Gazebo dynamic simulator has been used to demonstrate the effectiveness of the 210

proposed approach. In this context, control algorithms have been developed in C++ 211

programming language using Robot Operating System (ROS) as middleware [31]. At the 212

same time, the simulation of the flying platform is based on the library RotorS [32]; such a 213

library implements dynamic flying robot models and sensor plugins suitable for Gazebo 214

under ROS and usable for developing custom controllers designed to be analogous to its 215

real-world counterparts so that such simulation is almost transparent with real systems. 216

By default, only flat UAVs are available using RotorS software. Therefore, a custom tilted 217

hexacopter has been designed and modelled, taking the well-known AscTec firefly platform 218

as inspiration. A significant benefit of the RotorS library among the different control and 219

state estimation algorithms is the possibility to simulate UAV rotors with desired motor 220

dynamics and characteristics. In this way, a new multi-copter model can be designed by 221

grouping different rotor models together. Each rotor imported in the simulation scene 222

can be controlled with a desired rotation velocity command, which is consistent with the 223

proposed control approach and allocation. The robot’s local position and attitude are 224

available through the ROS network to implement the closed control loop. 225

The system architecture is depicted in Figure 3, which is discussed in the following. 226

Two main modules have been deployed in the form of ROS nodes: the controller (24) and 227

the observer (25). The latter takes the desired control signal generated by the controller 228

and the multirotor’s full pose as input. At the same time, its output is represented by the 229

estimation of the total disturbances acting on the platform. As for the controller, this module 230

receives the platform’s pose from the Gazebo simulator and the disturbances estimation 231

provided by the observer to generate the six desired motor control signals expressed in rpm 232

(revolutions per minute). In this context, Table 1 reports a list of the controller’s parameters 233

and the characteristic of the UAV platform and its motors used to test both the SMC and 234

the ADRC. In particular, ωimax represents the maximum rotational velocity of the motors, 235

k f and kτ represent their drag force and rolling moment constants, respectively, L is the 236

length of the UAV arm, and α is the tilt angle of each rotor. Differently, K1,...,6 and K7,...,12 237

are the main diagonal components of the feedback gain matrices. It is worth mentioning 238
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that the same proportional and derivative gains were used to test both controllers; the 239

difference is how they reject disturbances, namely, SMC uses the sliding term while ADRC 240

uses the observed signal of the augmented state as feedback. The system has been tested 241

on a standard computer running Ubuntu 20.04 as operating system, while ROS Noetic has 242

been chosen as distribution. 243

Table 1. List of parameters used for controller implementation and the aerial platform.

Parameter Value

m 2.1 kg
ωimax 1500 rpm

k f 8.54858 × 10−6

kτ 1 × 10−2

L 0.215 m
α 20 deg

K1,...,6 {2, 2, 20, 800, 800, 2500}
K7,...,12 {4, 4, 25, 1200, 1200, 5000}

5. Case Studies 244

This section addresses the tests conducted to assess the effectiveness of the proposed 245

control-observer scheme. First, a complex trajectory is commanded to evaluate the tracking 246

performance; the following experiments consist of a regulation task at a given pose in 247

the presence of external disturbances, which were implemented using a Gazebo external 248

wrench plugin8. Finally, a comparison of the proposed controller against a sliding mode 249

controller has been carried out. All the tests are shown in video9. 250

5.1. Tracking 251

This test consists of commanding a complex trajectory to the UAV in Cartesian coordi-
nates with respect to the world frame FW . The Cartesian position trajectory is given by the
following Lemniscate’s parametric equations

xd
b =

a cos(2π ftt)
1 + sin2(2π ftt)

yd
b =

a sin(2π ftt) cos(2π ftt)
1 + sin2(2π ftt)

zd
b = bt

, (35)

where a = 1.4, b = 0.2 are scalar parameters, t is the time, and ft = 0.5 is the frequency 252

in Hz. The time derivatives of (35) were computing numerically. Firstly, the UAV is 253

commanded to take off, thereafter it is commanded to reach (xd
b , yd

b , zd
b) = (0, 1.4, 1) m 254

with zero orientation, so that it could start and then perform the Lemniscate trajectory, and 255

to end hovering steadily. 256

Figure 4 shows the norm of the state error ∥x̃∥ during the whole experiment. It can be 257

seen that such a norm is always below 3 cm while the UAV is flying and decreases to zero 258

when it hovers. Furthermore, Figure 5 displays that the UAV trajectory tracks the desired 259

trajectory in the Cartesian space. 260

5.2. Regulation with Wind and Payload 261

The robustness of the observer-controller scheme has been assessed by simulating
wind conditions while the UAV is hovering at a target set point. The first experiment

8 https://github.com/Viviana-Morl/ft_gazebo_plugin
9 https://www.youtube.com/watch?v=TyOvDe81VHc

https://github.com/Viviana-Morl/ft_gazebo_plugin
https://www.youtube.com/watch?v=TyOvDe81VHc
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involves flying the UAV to the set point (xd
b , yd

b , zd
b) = (1, 1, 2) m with zero orientation

and applying an external disturbance some seconds after it reaches the set point. Such a
disturbance represents a sudden wind shear given by

fu =

0.5 ∗ sign(cos(t/2))
0.5 ∗ sign(sin(t/2))

0

 N, 38 ≤ t ≤ 48 s (36)

The top of Figure 6 shows the six controlled states of the UAV during the test. It can be
appreciated that the position of the UAV along xb and yb axes is affected by the wind
shear (36) in a range of ±15 cm. However, once the wind ends, the states return to
the desired values; furthermore, accurate tracking of all the states employing the robust
observer is shown. In addition, the bottom of the same figure shows the reconstructed
total disturbances affecting the chain of integrators that represents the UAV dynamics. The
external forces and torques on xb and yb can be noticed as well as the effect of the gravity
on the UAV. All those signals are obtained using the SMESO (25). Another test, but under
soft wind conditions, has been conducted: now, the external disturbances representing a
wind blow are given by

fu =

0.5 cos(t/2)
0.5 sin(t/2)

0

 N, 28 ≤ t ≤ 38 s. (37)

The six controlled and observed states of the UAV’s pose are shown at the top of Figure 7. 262

It can be appreciated that the position along xb and yb axes is affected ±5 cm, but returning 263
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Figure 4. Time evolution of the norm of the state error while the UAV is performing the commanded
Cartesian trajectory.
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to the desired target pose after the wind ends. Alike the Figure 36, the bottom of Figure 7 264

shows the reconstructed total disturbances using the SMESO (25). 265

Another experiment was performed to assess the effectiveness of the reconstruction 266

of the disturbances by means of the proposed SMESO. First, the hexarotor is commanded 267

to take-off to 2 m without the node of the SMESO running. Some seconds later the 268

SMESO is turned on and after some time, a -5 N force is applied in the zB direction for 12 269

seconds simulating a payload condition. Figure 8 shows the results of the aforementioned 270
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Figure 6. Top: Behaviour of states of the UAV during a regulation task subjected to sudden wind
gusts. − − Set points. —- Measured states. − − Observed states. Bottom: Reconstructed total
disturbances about each axis.
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experiment. The left side of the figure displays the norm of the state error. It can be noticed 271

that, during the take-off without SMESO feedback, the target set point is not achieved 272

and some oscillations are present as well. Afterwards, the norm of the error becomes zero 273

when the SMESO feedback is available. Finally, two peaks of 20 cm can be observed, which 274

occurred when adding and removing the payload force respectively; despite such peaks, 275

the norm of the error was also zero in the meantime the payload was applied. The right side 276

of Figure 8 shows the time evolution of the estimated disturbance along zB axis. It can be 277
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Figure 7. Top: Behaviour of states of the UAV during a regulation task subjected to wind blows.
− − Set points. —- Measured states. − − Observed states. Bottom: Reconstructed total disturbances
about each axis.
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Figure 8. Left: Time evolution of the norms of the state error.
Right: Time evolution of the estimated force along zB axis, which is retrieved from the SMESO.

appreciated that the SMESO supplies a signal of -20,6 N, which is consistent with the total 278

weight of the hexarotor, since the controller (24) does not include gravity compensation. In 279

addition, it can be noticed that the SMESO provided a signal of -25,6 N while the payload 280

was being applied, thus, the external disturbances were effectively reconstructed with the 281

proposed SMESO. 282

5.3. Comparison Against Sliding Mode Control 283

Finally, the proposed controller performance has been compared against the SMC
given by

u = B−1
2 K

[
sign(s)T − ẋT

]T
, (38)

where K has the same values as in Table 1, and the s = diag(2, 2, 10, 20, 20, 20)x̃ − ẋ is the 284

sliding surface. The UAV is commanded to the target set point (xd
b , yd

b , zd
b) = (0, 0, 2) m 285

with 10 deg of orientation about zb for 20 seconds. 286

Figure 9 shows the norms of the error using both controllers. Even though both 287

controllers provide a stable behaviour of the norm of the error, a steady-state error of 5 cm 288

can be appreciated with SMC. 289
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Figure 9. Time evolution of the norms of the state error while the UAV is performing a regulation
task. —- ADRC. −− SMC.

6. Conclusion 290

A robust control scheme for full pose regulation and tracking of a passively tilted 291

hexarotor UAV was presented in this work. The main contribution is implementing a 292

theoretical-sustained ADRC approach with a robust SMESO on a passively tilted hexarotor 293

employing a highly realistic simulator. It is worth highlighting that such a technique has 294

not been reported in the literature for passively tilted hexarotors. Furthermore, the stability 295

analysis of both the designed controller and observer was presented using a consistent 296
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theory that does not rely on a priori knowledge of the total disturbance bound as sev- 297

eral ADRC schemes do in the literature. As mentioned above, a simulator with physics 298

motors was used during the presented work, which behaviour is almost identical to the 299

real UAV. In order to prove the effectiveness of the control system proposal, several case 300

studies were carried out. Achieving the target trajectory was successful since all the states 301

reached the target value with errors close to zero. Additionally, the proposed controller 302

was effective upon payload and continuous time-varying and discontinuous wind distur- 303

bances simulation thanks to the perfect reconstruction of the external disturbances, which 304

is consistent with the theoretical hypothesis of the convergence of the observer regarding 305

the non-differentiable total disturbance. The proposed controller yielded a recovery time 306

fewer than five seconds, achieved the set point with a significantly low overshoot for 307

the worst case, and remained within an acceptable range upon solid disturbances. The 308

presented control approach performed better than the SMC because it yielded significantly 309

less steady-state norm of the error for full pose regulation. These successful results prove 310

the effectiveness of the proposed control technique and motivate its application to other 311

UAVs. 312
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