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Abstract

A new method to catch a thrown ball with a robot endowed with an eye-
in-hand monocular visual system integrated into a gripper is proposed. As
soon as the thrown ball is recognized by the visual system, the camera carried
by the robot end-effector is forced to follow a baseline in the space so as to
acquire an initial data-set of visual measurements from several points of view,
providing a first estimate of the catching point through a linear estimation
algorithm. Hereafter, additional measurements are acquired to constantly
refine the previous estimate by exploiting a nonlinear estimation algorithm.
During the robot trajectory, the translational components of the camera are
controlled in such a way as to follow the planned path to intercept the ball,
while the rotational components are forced to keep the ball into the field
of view. Experimental results performed on a common industrial robotic
system prove the effectiveness of the presented solution.

Keywords: Ball catching, monocular camera, visual servoing, trajectory
estimating

1. Introduction

Advanced robotic systems, which are required to perform quick reac-
tions in response to visually perceived movements in a partially structured
environment, are no doubt a good benchmark for testing of new control al-
gorithms and new estimating/predicting processes. The challenging scenario
of the robotic ball catching problem has been extensively considered in the
literature for experimental testing of the above capabilities.
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The state of the art presented in Section 2 shows that most of the existing
systems use either a stereo visual configuration to solve the 3D ball catching
problem or a single camera for the 2D sub-problem. In the former case, the
3D tracking of the ball takes advantage from having the possibility to exploit
the epipolar constraint in the two available images; in the latter case, only
2D information can be directly retrieved from the single available image.
Nevertheless, in both situations, in order to obtain a successful catch, high
frame rate and accurate cameras are required to have a fast and precise
estimate of the ball trajectory. By employing just one camera it is possible
to reduce the total cost of the set-up. Moreover, the computational cost to
elaborate at high frame rate one image is lower than elaborating at the same
frequency two images. Hence, when high frame rate is a strict constraint,
using only one camera also saves computational resources. However, some
improvements in the controller and in the prediction algorithm should be
introduced to solve the problem in 3D.

In this paper, the robotic 3D ball catching problem is solved by using
a monocular visual system. A standard industrial robot manipulator is
equipped with a CCD camera mounted directly on the manipulator end-
effector. The proposed control law is composed of a continuous refinement of
the ball interception point through a nonlinear estimation algorithm, whose
initial starting condition is provided by a fast linear estimating process. An
initial camera motion is thus commanded along a suitable baseline so as
to collect a sufficient initial number of visual data from different points of
view and provide such initial estimate. Experimental results demonstrate
the effectiveness of the presented solution. The present work extends what
already presented by the authors in [1]. With respect to the past work, in
this paper the analysis of the employed controller is more detailed and the
stability proof is provided. Moreover, the estimating process has been im-
proved by introducing a recursive outliers rejection algorithm that improves
the measurement dataset employed for the estimation process. Finally, the
policy employed for the interception point selection has been detailed consid-
ering the physical limits of the robot, while the performance of the proposed
trajectory estimator is shown through a comparison with the ground-truth
provided by an OptiTrack motion-capture system.

The outline of the paper is as follows: after the presentation of related
work, an overview of the proposed algorithm is provided and the image pro-
cessing is briefly revised. Then, the partitioned visual-servoing controller
adopted during the catching motion is presented along with the stability
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proof. Further, the linear and nonlinear estimation algorithms are formal-
ized. Finally, the adopted set-up, the achieved experimental results and
the comparison with the available ground-truth are shown and critically dis-
cussed.

2. Related work

Several research works address problems related to the catch of thrown
objects and to the estimate of their trajectories. The approaches described in
this section can be categorized as follows: stereo visual systems that deal with
ball-catching tasks; monocular visual systems performing catching operations
in a plane; monocular visual systems that estimate the object trajectory
and perform catching operations in the 3D space; estimators dealing with
Chapman hypothesis; systems that take into account the forces exchanged
between the gripper and the thrown object; dynamic non-prehensile catching
tasks; neural networks; virtual reality applications.

2.1. Stereo visual systems

Vision systems employing two (or more) cameras benefit by using the
triangulation method to reconstruct the 3-D position of the ball [2, 3, 4].
However this requires an accurate calibration procedure and a sophisticated
elaboration hardware.

A stereo vision system combined with an observer with a variable strength
filter and an error estimator are employed in [5] to track and catch a thrown
ball. An initial motion algorithm is chosen to maximize the response time so
as to begin the motion of the arm as soon as the first visual data is taken.

A stereo visual system, an extended Kalman filter and a prediction al-
gorithm are employed in [6] to build a robotic ball catcher. Without using
specialized hardware, only using off-the-shelf components, the authors em-
ploy a stereo visual system to track a fast flying object and to catch it with
a net mounted upon a robotic arm. In order to detect the ball, the differ-
ence between the actual image and some reference images is computed using
a threshold method. Lately, a mobile humanoid and a gradient method to
detect circles in the images are employed in [7].

An inexpensive and uncalibrated camera is exploited in [8] to track a
rolling ball before it falls from a table. A robotic arm is programmed to
catch it through an attractor-based dynamics that autonomously generates
temporally discrete movements and sequences for the robot end-effector.
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Only 2D visual information given by a stereo vision system is employed
in [9] to achieve position control of a 3D robotic arm and catch a thrown
object. The control is applied to achieve simultaneously 2D tasks defined
directly on the image planes of the cameras: the 3D task is considered as
accomplished if all the 2D tasks are simultaneously fulfilled. However, such
working condition cannot guarantee the catch, since there is no estimate of
the 3D ball motion. Moreover, no prior knowledge about configuration and
dimension of the robotic arm is needed as well as no information about cam-
era parameters is requested (i.e., the robot Jacobian and camera calibration
are estimated on-line).

A planar robotic arm, a stereo visual system and a DSP equipment are
utilized in [10] to predict the right falling place of moving balls through a
Lagrangian interpolation formula.

2.2. Monocular visual systems: catching in a plane

Monocular visual systems have easier calibration procedures, but more
effort has to be put in the 3D reconstruction of the scene.

A camera and a prediction-based control system are employed in [11] to
catch a mouse moving on a plane. A single camera is employed to localize
the moving part, but since that is free to change the velocity and the acceler-
ation of its motion in the whole plane, then a continuous re-planning of the
path of the manipulator is required. The catch is always performed along
a predetermined catching line, and for this reason the target object should
cross such a line in a finite amount of time.

An experiment consisting in the catch of a ball moving on a table with a
robot manipulator is carried out in [12]. Two distinct visual servoing archi-
tectures are implemented: position-based and image-based visual servoing.
The catch is always performed along a straight line on the table and thus
the precise catching point is determined with the intersection between such
a line and the predicted trajectory of the ball, which is observed by a camera
mounted on the robot end-effector.

2.3. Monocular visual systems: catching in 3D

The 3D position and velocity of a thrown projectile are estimated in [13]
through the analysis of a sequence of images taken by a single camera. A
least-squares algorithm is employed to determine the state of such projec-
tiles from their apparent trajectories and considering a model of the motion
without air drag.
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A recursive least-squares algorithm is even used in [14] to estimate the
trajectory of a ball with an eye-to-hand visual system. Catching is performed
through a combination of image-based and position-based visual servoing.

This case best fits the work here presented. With respect to the cited
works, a monocular eye-in-hand configuration is considered in this paper,
hence the camera is mounted directly on the end-effector of the robot. In this
way, the control is in charge of maintaining the ball inside the camera field of
view, which instead is not possible in a eye-to-hand configuration. However,
the visual system has to cope with the change of resolution of the ball in
the image during the throw and with possible blur motions. Moreover, with
respect to the previous works, a more realistic model of the ball motion is here
employed, including also the air drag factor, along with a more sophisticated
nonlinear estimation process.

2.4. Estimators dealing with Chapman hypothesis

The Chapman strategy to catch a ball is introduced in [15], where it is
stated that a fielder should run at a proper speed to maintain a constant
increasing rate of the tangent of the ball elevation angle.

Reinforcement learning models are exploited in [16] to better understand
the perceptual features that guide a fielder to learn how to catch a flying
ball. For this reason, the authors implemented a system which learns both
how to keep constant the increasing rate of the tangent of the elevation angle
and how to use the velocity of the ball perpendicular to the fielder to decide
whether to run forward or backward.

Linear Optimal Trajectory(LOT) is introduced in [17] to catch a ball with
an autonomous mobile robot. By using LOT, the fielder problem, already
presented in Chapman paper, is converted into the spatial problem of keeping
the relation features in the 2D image plane. However, this approach requests
information about the ball initial optical location relative to the robot and it
is not applicable when the robot is located in the same vertical plane of the
ball trajectory. Hence, the same authors proposed in [18] the GAG (Gaining

Angle of Gaze) strategy, still based on Chapman hypothesis. GAG strategy
requires only the information about the elevation angle of gaze captured as
a 2D information, and it has also been extended to be used upon a robot
manipulator equipped with a camera, mounted in eye-in-hand configuration,
which moves in a plane [19].

In [20], the authors state that in order to track the ball in the manner
indicated by Chapman, the correct catching position and time should be
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known before starting the tracking task so as to determine the tracking speed.
Therefore, they presented a class of analytic solutions that track properly the
ball, and in which class Chapman results represent one solution among the
others.

2.5. Systems taking into account the force exchange

A falling ball and a falling cylinder are caught through a high-speed multi-
fingered hand in [21, 22] by using a stereo visual system. The proposed
strategy gives to the fingers an impact force changing the movement of the
object in the desired direction, in order to catch it in an optimal and stable
way.

The impedance of the hand is regulated for virtual ball catching tasks
in [23]. The authors underline the importance in regulating such impedance
since, for instance, a human might miss the ball when (s)he makes her/his
arm stiffen beyond necessity, because of the large contact force exerted on
the hand from the ball or, in the same way, (s)he might miss the ball making
her/his arm too compliant, thus without generating enough force to absorb
the ball motion.

2.6. Dynamic non-prehensile catching

Lately, non-prehensile ball catching [24] is considered as a particular case
of dynamic manipulation. The ball tracking is performed using a stereo
vision configuration, while the prediction of the ball trajectory is carried out
through a least-squares algorithm. The robot is guided to dynamically catch
the ball and, after the catch, a balancing controller is activated to keep the
ball on a plate mounted on the robot end-effector. The position of the ball
on the plate is estimated by measuring the forces and the torques at the
end-effector.

2.7. Neural networks and virtual reality applications

A suitable neural network is exploited in [25] to predict the path of the
ball and catch it through the humanoid SAIKA, equipped with a stereo visual
system.

Virtual reality applications are seen as additional test-bed applications
for ball catching tasks [26, 27, 28]. In particular, in the last two cited papers,
minimum jerk models for human kinematics are presented as a tool to pre-
dict user inputs in teleoperation with significant dynamics. A virtual reality
simulation of a teleoperated ball-catching scenario is used in order to test the
predictive power of the model.
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Figure 1: Block diagram of the proposed monocular robotic ball catching system. The
dashed lines mean that the related block about Linear Trajectory Estimation is executed
only once during the robot starting motion.

3. Algorithm overview

The overview of the proposed 3D monocular ball catching algorithm is
shown with the block diagram of Figure 1.

As soon as the thrown ball is detected by the visual system, the cam-
era mounted in an eye-in-hand configuration is forced to follow a suitable
baseline in the 3D space. The ball is always kept in the field of view of the
camera through a partitioned visual-servoing control. This starting motion
is performed to both ensure a well-conditioned estimating problem and col-
lect/process visual information to get a first prediction of the ball trajectory
through a rough linear estimate. Such prediction is employed as a starting
point for a more precise nonlinear refinement process of the trajectory.

When a new interception pose estimate is available, the on-line motion
planner smoothly switches its target to the new one, always keeping the
ball in the camera field of view. Hence, the new visual measurements are
continuously processed by the nonlinear optimization to on-line update the
estimate of the ball trajectory, and thus the prediction of the interception
pose.

Finally, when the continuous refinement does no longer improve the pre-
diction of the trajectory significantly, the final catching pose can be computed
taking into account the ball and the robot dynamics, so as to accommodate
the ball into the robotic gripper.
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Figure 2: Picture illustrating how the employed tracker can detect the ball thanks to the
desired selected color, defined by the HSL color space. In this case the selected ball is the
red one. On the left the original image, on the right the elaborated one after clustering
and blob analysis.

4. Image processing

The image processing stage has already been introduced in [1]. Hence,
only the key aspects are revised here. Other thrown objects detection meth-
ods can be found in [29].

A calibrated [30] CCD camera is mounted on the robot end-effector and
the acquired images are continuously processed to obtain the ball centroid
in the image and then compute the position of the ball in the normalized
image plane. The HSL (Hue, Lightness, Saturation) color space is used to
cluster the image during its process. The adopted clustering consists in a
binarization step and some post-elaboration processes employed to reduce
the effects of the image noise. All the blobs in the binarized image are
collected and filtered to eliminate, for example, the blobs with a very small
area and the background. Finally, the centroid of the selected blob can be
considered as an approximation of the ball center. In Figure 2 an example
of how the employed tracker works is depicted.

In order to seek the ball for the first time, the whole image is processed
with the above described modality until the ball is detected. Afterwards, a
dynamic windowing technique is employed to reduce the computational effort
of the image processing. The frame rate is speeded-up to more than 100 Hz
thanks to the Region of Interest (RoI) acquisition modality available on the
current USB cameras.

5. Partitioned visual servoing

The proposed visual control law belongs to the category named Resolved-

Velocity Image-Based Visual Servoing [31], for which it is assumed that the
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manipulator dynamics is taken into account directly by the low-level robot
controller. The considered robotic arm structure is an open kinematic chain
robot manipulator. The reference frames considered in the ball catching
scenario are the robot base frame Σb, fixed with respect to the ground, the
end-effector frame Σe, and the camera frame Σc = Oc–xcyczc (see Figure 3).
Being the last two reference systems fixed with each other, without loss of
generality, only the camera frame Σc is considered in the remainder of the
paper, since it could be assumed that it is coincident with Σe. The camera
optical axis is then aligned with the approaching axis of Σe.

In order to successfully accomplish the ball catching task, the ball should
never leave the field of view of the camera. Large parts of the scene can
be observed with small movements of the camera orientation, and thus with
small movements of the robot joints. For this reason, the rotational compo-
nents of the robot end-effector –the fastest ones– are devoted to track the
ball, while the translational components of the robot end-effector should be
planned to intercept the ball. Hence, the partitioned approach presented
in [32] has been employed in this work.

The position of the ball center with respect to Σc can be denoted as

pc
o =





xc

yc

zc



 = zc





X
Y
1



 = zcs̃,

in which s =
[

X Y
]T

is the (2× 1) normalized image coordinates vector
of the centroid of the ball, provided by image processing as described in

Section 4, while s̃ =
[

sT 1
]T

is the related (3 × 1) homogeneous vector of
s.

The expression relating the (6×1) absolute velocity vector of the camera

υc
c =

[

ṗcT
c ωcT

c

]T

, the (6 × 1) absolute velocity vector of the thrown ball

υc
o =

[

ṗcT
o ωcT

o

]T

, both expressed with respect to Σc, and the (2×1) velocity
vector of the image feature ṡ in the image plane, is the following linear
equation [31]

ṡ = Lsυ
c
c +LsΓ(−pc

o)υ
c
o, (1)

in which Ls is (2 × 6) is the interaction matrix of a point image feature
defined as follows [31]

Ls =





− 1

zc
0 X

zc
XY −1−X2 Y

0 − 1

zc
Y
zc

1 + Y 2 −XY −X



 (2)
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and Γ(·) is the (6× 6) matrix

Γ(·) =

[

−I3 S(·)
0 −I3

]

,

where In denotes the (n × n) identity matrix and S(·) the skew-symmetric
matrix. Let Lsp and Lso be the (2 × 3) sub-matrices corresponding to the
first and last three columns of (2). Equation (1) can be then rewritten as

ṡ = Lsp (ṗ
c
c − ṗc

o + S(−pc
o)ω

c
o) +Lso (ω

c
c − ωc

o) .

The translational components ṗc
c of the robot motion are devoted to move

the robot to intercept the ball with the gripper mounted on the robot end-
effector. In order to ensure a smooth re-planned trajectory when a new
interception target point is available, the continuity between the current mo-
tion state, in terms of position, velocity and acceleration, and the new initial
one has to be imposed. In order to on-line compute the desired trajectory for
the camera frame, a fifth-order polynomial vector in the 3D Cartesian space
is taken into account

pc,d(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0, (3)

with pc,d the (3 × 1) desired absolute position of the camera with respect
to Σb, and ah with h = 0, . . . , 5 are (3 × 1) coefficient vectors. The desired
velocity of the camera frame is then equal to

ṗc,d = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t+ a1, (4)

and the translational acceleration of the camera is equal to

p̈c,d = 20a5t
3 + 12a4t

2 + 6a3t + 2a2. (5)

The parameters ah in (3)–(5) are updated on-line as follows. Let ti, tf ,
pc,d,i, pc,d,f , ṗc,d,i, ṗc,d,f , p̈c,d,i and p̈c,d,f be the initial and final planned time,
the initial and final position, and the translational velocity and acceleration,

respectively. By denoting with āh =
[

aT

5
aT

4
aT

3
aT

2
aT

1
aT

0

]T

and tak-
ing into account (3)–(5), the following linear quadratic system of 18 equations
into 18 unknowns is retrieved

















t5i t4i t3i t2i ti i3
t5f t4f t3f t2f tf i3
5t4i 4t3i 3t2i 2ti i3 03

5t4f 4t3f 3t2f 2tf i3 03

20t3i 12t2i 6ti 2i3 03 03

20t3f 12t2f 6tf 2i3 03 03

















āh =

















pc,d,i

pc,d,f

ṗc,d,i

ṗc,d,f

p̈c,d,i

p̈c,d,f

















, (6)
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where i3 =
[

1 1 1
]

, ti = tii3, tf = tf i3, and 03 = 0i3. It is worth noticing
that the initial conditions are given by the current state of the motion of the
robot, while the final conditions depend on the current available estimate
(more details will be provided in the next sections).

Hence, on one hand, the translational components of the velocity input
for the camera frame Σc can be generated as follows

ṗc
c = RT

c

(

ṗc,d +Kpep

)

, (7)

with Rc the rotational matrix of the camera frame Σc with respect to the
base frame Σb, Kp > 0 a diagonal constant (3 × 3) gain matrix, and ep the
(3× 1) error vector between the desired trajectory (3) and the one provided
by the robot direct kinematics at time t.
On the other hand, the rotational components of the velocity input for the
camera frame Σc can be generated in the image space as follows:

ωc
c = L†

so

[

Kso,eb2(es)τττ eb1(es)− L̂sp

(

ṗc
c −

˙̂pc
o + S(−p̂c

o)ω̂
c
o

)]

+ ω̂c
o, (8)

with † denoting the pseudo-inverse of a matrix, p̂c
o the estimate of the un-

known position of the ball in Σc, and ṗc
c evaluated in (7). The terms ˙̂pc

o

and ω̂c
o are the estimates of the unknown absolute translational and angular

velocities of the ball with respect to Σc. Besides, the error term es = −s

is the image error vector becoming null when the camera is pointed towards
the centroid of the ball, while the term τττ eb(es) is a threshold function defined
as

τττ eb1(es) =







0 if ‖es‖ ≤ eb1
(

1−
eb1
‖es‖

)

es if ‖es‖ > eb1,
(9)

with Kso,eb2(es) a (2× 2) gain matrix defined as

Kso,eb2(es) =











koI2 if ‖es‖ ≤ eb2

koe
βo

(

‖es‖

eb2
− 1

)

I2 if ‖es‖ > eb2,

(10)

where ko > 0 is a gain factor, eb2 > eb1 > 0 are proper thresholds, and βo > 0
is a restraint factor tuning the increasing rate of Kso. In order to avoid the
loss of the ball view, this last gain term suddenly increases when the centroid
of the ball approaches the limits of the image plane.
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Notice that L̂sp in (8) is an estimated term since it depends on p̂c
o. The

details about how to estimate p̂c
o,

˙̂pc
o and ω̂c

o are given in Appendix.
For what concerns the stability proof of the system, the following theo-

rems hold.

Theorem 1. Provided that Kp is a positive definite matrix, the control law

(7) ensures an asymptotic convergence to zero of the position error ep.

Proof. The time derivative of the position error can be computed as

ėp =
d

dt
(pc,d − pc(t)) = ṗc,d − ṗc,

where pc(t) is the (3× 1) vector denoting the current position of the camera
with respect to Σb at time t, computed by solving the direct kinematics of
the robot, while ṗc is the related translational velocity of the camera with
respect to Σb. Pre-multiplying by Rc both sides of (7), folding the result
into the previous equation yields

ėp +Kpep = 0.

SinceKP is a positive definite matrix, usually a diagonal matrix, the previous
system is asymptotically stable and the error ep tends to zero along the
trajectory with a convergence rate depending on the eigenvalues of Kp. ■

Theorem 2. The system (1) is asymptotically stable under the control laws

(7)–(8), in presence of a perfect estimate of the unknown terms. Otherwise,

only stability can be ensured.

Proof. The following analysis is performed using the direct Lyapunov the-
orem. Consider the following candidate Lyapunov function

V (es) = eT

s Kses, (11)

where Ks is a (2 × 2) positive definite diagonal matrix. By noticing that
ės = −ṡ, computing the time derivative of (11) and taking into account (1)
yields

V̇ = −α1 − α2 − α3,
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where

α1 = eT

s Ks

(

Lsp − L̂sp

)

ṗc
c (12a)

α2 = eT

s KsKso,eb2(es)τ eb1(es) (12b)

α3 = eT

s Ks

(

LsΓ(−pc
o)υ

c
o − L̂sΓ(−p̂c

o)υ̂
c
o

)

. (12c)

If each term in (12) is strictly positive, then V̇ < 0. However, no term
in (12) is a quadratic form, hence only qualitative considerations can be
achieved.

If L̂sp = Lsp, the term α1 in (12a) vanishes, but there is no guarantee
that such condition can happen. Nevertheless, the α1 term is bounded since
the condition for updating L̂sp through the estimate of p̂c

o seems to be the
optimal one during the experiments [33].

By considering (9)-(10), the term α2 in (12b) can be bounded as follows

0 ≤ α2 ≤ eT

s Ks






koe

βo

(

‖es‖

eb2
− 1

)

I2






es. (13)

By choosing Ks = koe
βo

(

‖es‖

eb2
− 1

)

I2, the last term in (13) is positive
definite. Hence, α2 is always positive and limited.

The α3 term in (12c) vanishes in case of perfect estimate. Otherwise,
nothing can be said about the sign of α3. However, (12b) is a quadratic
form in es, while (12c), and also (12a), are linear functions of the error in
the image plane. Hence, on one hand, for an error of small norm, the linear
terms prevail over the quadratic terms, but the norm of Ks can be increased,
i.e., an higher value of ko, to reduce the error as much as possible. On the
other hand, for larger errors, the quadratic terms prevail over the linear ones.
In conclusion, the error es in (12c) is bounded.

Finally, in case of a perfect estimate, the terms α1 and α3 vanish, while
α2 is positive and limited. Then, the chosen control laws lead to an asymp-
totically stable system. In case of an imperfect compensation, instead, the
error in the image plane is anyway bounded. For a ball catching task, this
stability condition can be considered sufficient, because the visual control
goal is mainly in keeping the ball in the field of view of the camera. ■
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Finally, the input to the robot controller, i.e., the joint velocity vector,
can be computed as [31]

q̇ = J †(q)T cv
c
c +NJKrq̇r, (14)

with q the vector of joint positions, J(q) the Jacobian matrix of the robot,
T c the (6×6) matrix relating υc

c to the velocity of the robot end-effector with
respect to the base frame, NJ the projector matrix into the null space of the
robot Jacobian, Kr a gain diagonal matrix, and q̇r a set of joint velocities
employed in a possible redundancy management to optimize some other sub-
tasks. For instance, q̇r might be employed to avoid joint limits and kinematic
singularities.

6. Trajectory estimation

6.1. Initial baseline

Since just one camera is employed, a classic static triangulation method
cannot be adopted in the proposed scenario. The proposed process to es-
timate the trajectory of the thrown ball consists in the interpolation of 2D
visual measurements along the time.

In order to yield a well-conditioned problem, the visual data collection
has to be acquired moving the camera along a significant path. Therefore, as
soon as the ball is recognized for the first time after the throw by the pitcher,
the camera is forced to move along a straight line in the 3D Cartesian space
with high velocity, i.e., the initial baseline. The orientation of the camera is
controlled with the above introduced control law (8) to keep the ball in the
field of view.

6.2. Linear initialization

The procedure for the linear initialization is explained in [34], hence only
a brief description is here addressed.

During the initial baseline, a sequence of image measurements are col-
lected. Let tk be the k-th visual sample time, s̃k the corresponding ac-

quired image feature vector, p =
[

x y z
]T

the points belonging to the
camera optical ray and passing through the current origin of the camera

ck =
[

cx,k cy,k cz,k
]T

. The k-th feature vector rk =
[

rx,k ry,k rz,k
]T

=
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Figure 3: The camera reference frame Σc is shown in two different sample times, tj and
ti. The ball trajectory is shown with a red dotted line, while in blue is represented the
corresponding camera trajectory.

ck +Rc,ks̃ can be defined by the following equations representing a straight
line in the 3D space (see Figure 3)

{

(ry,k − cy,k)x+ (cx,k − rx,k)y + rx,kcy,k − ry,kcx,k = 0
(rz,k − cz,k)x+ (cx,k − rx,k)z + rx,kcz,k − rz,kcx,k = 0,

(15)

where Rc,k is the rotation matrix of Σc with respect to Σb at time tk. Both
ck and Rc,k are provided by the robot direct kinematics.

During this initialization, the effect of the air drag to the motion of the
ball is neglected. Hence, the ballistic motion can be modeled as a parabolic
function of time t as follows

p = p0 + v0t+
1

2
gt2, (16)

with g the gravity acceleration, p
0
and v0 the initial position and velocity

of the ball (t = 0), respectively, corresponding to the time of the first ball
detection. Notice that, without loss of generality, the gravity acceleration is

aligned to the axis y of the chosen Σb, i.e., g =
[

0 g 0
]T

and g = 9.81m/s2.
At each tk, the optical rays intersect the ball trajectory. Folding (16) into

(15) yields a system of 2 equations into 6 unknowns p0 and v0, that fully
describes the trajectory of the ball. Stacking into rows the nl measurements
yields a system of nl equations into 6 unknowns that can be solved through a
least-squares solution. Additional considerations about this stage are given
in [1, 34].
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When the process produces the estimate, the first estimated interception
point is then computed. In details, by starting from the actual state of
the robot (time, position, velocity and acceleration of the camera frame),
the system in (6) can be solved to obtain the new set of ah parameters.
These allow the robot to reach the predicted interception position, whose
computational details are provided in Section 6.4, at the estimated catching
time. The rotational part of the camera, instead, is kept free to track the
ball in order to acquire more visual measurements during the movement.

The estimate provided by this linear algorithm is employed as a starting
point for the next stage, that is a nonlinear algorithm for the estimate of
the ballistic motion. Such an estimate is continuously refined by using new
available observations of the ball and a more accurate trajectory model.

6.3. Nonlinear estimation refinement

New visual measurements are collected during the time required by the
previous linear estimating process to give the result. Afterwards, both the
new visual measurements and the old ones are employed in a nonlinear es-
timating process that starts from the result obtained by the previous linear
method.

In details, let sk be the centroid of the ball acquired at a time tk, the cost
function to be minimized is

min
p

0
,v0

n
∑

k=1

∥

∥

∥

∥

1

z̃ck

[

x̃c
k

ỹck

]

− sk

∥

∥

∥

∥

, (17)

with n the current number of available visual measurements and p̃c
k the

estimated position of the ball with respect to Σc

p̃c
k =





x̃c
k

ỹck
z̃ck



 = RT

c,k (p̃k − ck) . (18)

The estimated position of the ball p̃k(p0
, v0, tk) is obtained numerically by

integrating the following ballistic model [6]

v̇(t) = g −
cwπd

2

bρa
2mb

‖ v(t) ‖ v(t), (19)

with cw a coefficient depending on the thrown object, db the diameter of the
ball, ρa the density of the air andmb the mass of the ball. Hence, the previous
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model includes the air drag, and its numeric integration is performed in the
time interval [0, tk], with the initial conditions p

0
and v0.

Minimizing (17) means that the initial conditions of the ballistic model
are tuned to generate an estimated trajectory of the ball that minimizes the
distance between the predicted projection of the ball onto the image plane
and the corresponding measured observations of the ball along the time.

In practice, the minimization of the cost function (17) is performed using
the Levembert-Marquardt algorithm. The result is the updated values of p0

and v0.
With respect to [1], a statistical procedure to deal with the presence

of image noise is proposed. During the trip, the ball can be subject to
different illumination/shadow conditions that could generate different levels
of noise for the samples into the measurement dataset. In details, once
the minimization process ends, the mean error, the standard deviation and
the contribution of each visual measurement sk to the error residual are
evaluated. The visual measurements that contribute to the error residual
outperforming with a certain factor the standard deviation are temporarily
excluded for the next estimation process.

New measures are acquired during the time in which such nonlinear es-
timating process computes the updated values of p

0
and v0, and then the

updated interception point. This new data set (without the previously con-
sidered outliers) is employed during the next nonlinear refinement that will
adopt the previous optimal solution as initial condition. Again, once the
minimization process ends, all the visual measurements (even the ones pre-
viously considered as outliers) that contribute to the error residual in a way
that is not statistically coherent are excluded for the next optimization. This
arrangement is able to improve significantly the accuracy of the estimation
process when noisily visual measurements are available.

The ah trajectory parameters are updated by solving (6) as soon as the
new interception point is available. The new trajectories (3) and (4) start
from the current motion state of the camera and end with the estimated
position at the update final time of interception.

Such refinement process stops when the current estimate catching time
is approaching with respect to the grasping time required by the available
gripper. Afterwards, the final catching trajectory is planned to accommodate
the motion of the ball into the available robotic hand, as explained in the
following subsection.
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6.4. Catching point selection

The current catching point p× is evaluated along the current estimated
trajectory as the point that is reachable with a minimum effort of the actual
joint torques. The time of the catch t× and the velocity of the ball υ× at
the position p× can be as well evaluated from both the current predicted
trajectory and the kinematic/dynamic robot models.

In detail, the current estimated path T falling into the working space
of the robot manipulator is sampled with a fixed step in several candidate
catching points Pi ∈ T . For each of these points, the robot inverse kinematics
is computed so as to retrieve the joint position of the manipulator. The
inverse kinematics is computed with a closed-loop inverse kinematics (CLIK)
algorithm [31].1 A set of quality indices can be considered for the selection
of the best catching point. In this paper, a joint limits and manipulability
measurements are suitably combined with a convex linear combination (see
[31] for more details about the adopted quality indices). The candidate
catching point maximizing the above defined convex linear combination of
quality indices is chosen as the current catching point p×.

Therefore, the parameters ah are tuned to lead the gripper from the cur-
rent state of the robot to the point p× at the time t× with the same velocity
of the ball υ×. Notice that the planned trajectory could be not feasible with
respect to the robot capabilities. If the maximum required acceleration for
the end-effector, i.e. the camera, is greater than a fixed limit chosen in a con-
servative way accordingly with robot capabilities, then the catching time is
properly scaled. Denoting with αmax the norm of the maximum acceleration
that the end-effector can reach and with p̈c,d the maximum planned accel-

eration that can be retrieved from (5), if ‖p̈c,d‖ > αmax, then the catching

time is scaled as t̄× = t×

√

‖p̈c,d‖/αmax.

The catching path is then generated when the estimation process stops.
In details, the orientation of the camera is controlled to have a direction of
the optical axis, i.e., of the gripper, equal to the tangent to the estimated
trajectory of the ball at p×. Once that the catching point is reached at t×

1Notice that the inverse kinematics can be evaluated iteratively between two consecu-
tive candidate catching points, by using the joint configuration of the previous catching
point to initialize the algorithm for the new Cartesian configuration. In this way, being
consecutive candidates close to each other, few iterations are required to converge to the
solution of the joint configuration corresponding to the current candidate.
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Figure 4: Architecture of the ball catching system.

with the same (or reduced) velocity of the ball, the gripper is closed and is
moved along the predicted path of the ball, while its velocity is decreased
to zero in a fixed time/space. In such a way it is possible to dissipate the
impact energy in a proper time interval.

7. Experiments

7.1. Experimental set-up

The employed experimental set-up is depicted in Figure 4. A USB iDS
UEYE UI-1220SE-C camera is mounted in an eye-in-hand configuration di-
rectly in the center of the palm of the gripper. Such a gripper is made up
of two 12V brushed DC motors, with a metal gearbox and an integrated
quadrature encoder. Through a rack-and-pinion mechanism the motion of
these motors allows the closure of the gripper fingers. The hand is mounted
on a COMAU Smart-Six robot manipulator standing on a sliding track. The
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compensation of the dynamic model of the robot is in charge of the COMAU
C4G control unit.

An external PC with a RTAI real-time kernel UBUNTU OS generates the
references for the robot each 2ms. This PC communicates with a second PC
with Windows OS that is in charge of the visual elaboration process. In order
to improve the stability of the elaboration time and synchronize the visual
measurements with the motion of the robot, a high-priority multi-thread
programming has been employed.

A ground-truth for the estimation algorithm is achieved from an Opti-
Track motion-capture system composed of ten S250e cameras that are em-
ployed to track the ball during its motion.

7.2. Technical details

An image size of (375× 500) pixels together with a dynamic RoI window
of (150× 150) pixels are employed to increase the acquisition frame rate up
to 140 fps.

The thrown ball has a diameter of 8.5 cm and a weight of about 32 g. Six
reflecting markers are attached on the ball in order to make the OptiTrack
able to observe it. These markers do not affect the detection of the ball
in the scene since they are very small. In fact, the corresponding image
blobs are small with respect to the ball area and are easily eliminated during
image processing. The coefficients of the air drag factor have been tuned to
cw = 0.45 and ρa = 1.293 kg/m3.

The gain matrix in (7) has been set to Kp = 500I3, while the gains in
(8) have been tuned to ko = 200, eb1 = 10 and eb2 = 100.

The coefficients of the air drag factor have been firstly retrieved from clas-
sic fluid dynamics theory and then have been refined during the experiments.
The control gains have been tuned in an experimental way as well.

The maximum joint velocities of the employed robot from axis 1 to 6 are
namely: 140, 160, 170, 450, 375 and 550 degrees per second. The sliding
track maximum velocity is 1.5 m/s. Through experimental validation it has
been verified that, in a conservative way, the feasible maximum Cartesian
acceleration norm for the end-effector is about αmax = 40 m/s2, for tra-
jectories lying inside the catching volume. The intrinsic redundancy of the
chosen robotic platform has been exploited in (14) to avoid joint limits, kine-
matic singularities and to reduce the movements of the sliding track since its
dynamics is considerably slower than those of the other joints.
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Considering some environmental constraints which are present in the lab
and the dexterous working space of the robot, the catching volume is 1.5 ×
1.2 × 0.5 m. (w × h × d), seen with respect to the pitcher. The initial
baseline has a planned length of 50 cm that should be performed by the
camera in 500 ms. However, the first estimate of the trajectory starts when
about nl = 45 samples have been collected, i.e., after about 320 ms, hence
typically the first catching trajectory starts before the end of the baseline
path. Latency periods and delays between the robot control PC, the C4G
control unit and the visual elaboration PC are present and they are estimated
so as to synchronize at the best the direct kinematic measurements with the
visual data.

7.3. Results

Several experiments have been performed with several pitchers and vary-
ing light conditions. Over a set of about 300 throws, the catching rate is
about 87.5%, with an interception rate of 98%2. In Figure 5 it is possible to
observe the complete ball trajectory for a given throw, with the overlay of
the robot motion.

The OptiTrack system has been employed to give a ground-truth about
the estimate of the ballistic trajectory. Some examples are depicted in Fig-
ure 6, where the green tube is the space occupied by the ball during its flight
towards the robot and it is measured by the OptiTrack system. In details,
the motion capture system provides the 3D position of the six markers at a
frequency of 250 Hz. By knowing both the geometrical features of the ball
and the position of these markers it is possible to reconstruct the real bal-
listic trajectory of the ball. The blue line is the final estimated trajectory of
the centroid of the ball. It is possible to observe that the blue line is always
inside the green tube: this gives a geometric quality measure about the per-
formance of the proposed estimating process. The red line shows the path
followed by the camera/gripper mounted on the robot. It is then possible
to recognize both the initial baseline and the catching path, in which the
gripper exactly follows the predicted trajectory to decrease the velocity of
the ball.

Moreover, further to the geometrical path, another quality index to mea-
sure the performance of the estimating process is a comparison along the time

2Notice that some thrown ball are suitably intercepted but not firmly caught.
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Figure 5: Overlay of the ball trajectory and robot motion.

between the ground-truth and the final predicted trajectory. With reference
to the throw depicted in Figure 6(a), the time histories of both the ground-
truth and the predicted trajectories are shown in Figure 7. Again, the time
histories of the predicted trajectory fits inside the ground-truth provided by
the OptiTrack system.

Again with reference to the throw depicted in Figure 6(a), all the pre-
dicted interception points p×, projected in both the (x−y) and (z−y) planes
of Σb, are represented with a cross point in Figure 8. The color bar identi-
fies the ordered sequence of such predicted interception points, while biggest
brow cross represent the final position p× in which the estimate has been
considered as stable. The dashed lines represent the planned path for the
hand, which is achieved using (3) starting from the current motion state and
leading to the current estimated interception position, while the continuous
line is the real path followed by the gripper, which starts with the baseline
(green piece of the path). It is worth noticing that the first estimated point,
the green one, is given by the linear estimating process. The big orange
circle is the full representation of the ball in the final position measured by
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(a) Throw n.1 (b) Throw n.2

(c) Throw n.3 (d) Throw n.4

Figure 6: 3D plots of four different throws. The blue line is the final estimated trajectory
of the ball centroid. The green cylinder is the space occupied by the ball during the flight
that has been measured by the OptiTrack system. The red path is the motion of the
camera/gripper.

the OptiTrack system and projected in the above mentioned planes of Σb.
The big blue circle in the background is instead the space occupied by the
gripper base in the final estimated position and projected in the the above
mentioned planes of Σb. The information provided by Figure 8 is twofold.
First, it is possible to recognize the tolerance between the real position of the
ball and the space occupied by the gripper at the interception point; then,
another way to measure the quality of the estimate is the evaluation of how
far the final estimated p× is from the center of the measured position of the
ball.
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Figure 7: Time histories of the ground-truth (in green) and the final predicted trajectory
(in blue) of the throw depicted in Figure 6(a).
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(a) x− y plane.

(b) z − y plane.

Figure 8: Sequence of the interception points (cross points) projected into the (x − y)-
plane and (z − y)-plane. The dashed lines represent the planned path, starting from the
current hand position (circle points) and ending into the current estimated interception
points. The continuous lines represent the real path followed by the gripper, starting with
the initial baseline (green) and leading to the final catching point (biggest cross). The big
orange circle represents the final position of the ball measured by the OptiTrack system.
The big blue circle in the background is the estimated final position of the gripper catching
base. The color bar on the right identifies the refinements of the interception points, while
the related labels represent the number of visual measurements employed by the estimating
process of each refinement.
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8. Conclusion and future work

A new solution to cope with the problem of catching a thrown ball with
only a single camera mounted on the robot end-effector has been described.
To the best of the authors’ knowledge, with respect to the current state of the
art, this is the first successful attempt to catch a flying object with a singular
moving camera. The estimate of the ball trajectory uses an iterative non-
linear optimization algorithm, which employs only 2D visual measurements
together with a complete ballistic ball motion model. Moreover, a linear es-
timation algorithm based on a first initial collection of ball observations and
on a simplified ball motion equation is employed to initialize the nonlinear
optimization algorithm, resulting in a significant speed-up of the proposed
method. In order to prove the results given by the proposed estimator, a
comparison with the measurements given by an OptiTrack motion-capture
system has been provided. The effectiveness of the proposed approach has
been demonstrated both in theory and with experimental results on a com-
mon industrial robotic set-up.

Future work will be focused on the realization of other object recognition
methods, for instance based on the shape. Other methods relying, for in-
stance, on particle filters and similar can be investigated in such a framework.
The stability proof can be enhanced by considering the camera calibration
errors as well. Moreover, a deep comparison between catching a thrown ball
by using either a moving or a static single camera could be developed.

Appendix

The necessary quantities to be estimated in (8) are the linear position
p̂c
o, linear velocity

˙̂pc
o, and angular velocity ω̂c

o of the center of the ball with
respect to Σc. Starting from the current estimate of the position p

0
and

velocity ṗ0 of the ball, the ballistic model (19) is numerically integrated in
the time interval [0, ti]. In this way, p̂c

o can be obtained at a certain time t.
With the same numerical integration, it is also possible to obtain the estimate
of the linear velocity ˙̂pc

o. Finally, the angular velocity can be retrieved as

ω̂c
o = (1/‖p̂c

o‖
2)(p̂c

o ×
˙̂pc
o).

It is worth noting that the first estimates of p
0
and ṗ

0
are obtained after nl

measurements. Before that nl measurements are collected, the initial values
of p0 and ṗ0 should be anyhow provided to compute the above mentioned
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qualities. Hence, a statistical calibration has been preliminary realized to
retrieve a rough initial estimation of p

0
and ṗ

0
.
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