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Abstract— A control framework for nonprehensile planar
rolling dynamic manipulation is derived in this paper. By
rotating around the center of mass, the manipulator moves
a part without grasping it but exploiting its dynamics. Given
some assumptions on the shapes of both the object and the
manipulator, a state transformation is found rendering the
state-space system in a chain of integrators form without
internal dynamics, allowing the possibility to exploit linear
controls to stabilize the whole system. An analysis of the
differential flatness property of the system is also provided.
Simulations and experiments validate the derived framework.

I. INTRODUCTION

The robotic manipulation problem aims at finding a set

of suitable controls to change the configuration of an object

from an initial to a desired value. Such manipulation task can

be achieved in a nonprehensile —the object is not grasped—

and dynamic—dynamics is exploited to control the motion—

way. This class of manipulation problems is still rather far

from being fully solved and applied in robotic applications,

while indeed there are several benefits [1]. As examples,

vibratory platforms are employed in those industrial applica-

tions where it is not directly possible to manipulate the ob-

ject by grasping, while dynamic nonprehensile manipulation

tasks are also performed during surgery to push away arteries

and reshape organs. Therefore, in order to perform similar

tasks, the control design has to carefully take into account

both the object and the robot dynamics. A typical approach to

tackle a nonprehensile dynamic manipulation task is to divide

complex actions into simpler subtasks, called primitives, such

as rolling, throwing, catching, pushing, batting, and so on.

This paper is focused on the nonprehensile planar rolling

primitive, where an actuated manipulator of a given shape,

referred to as hand, manipulates an object without grasping

it through rotations. The object can only roll upon the hand’s

shape.

Nonprehensile manipulation tasks have been firstly intro-

duced in robotics in [1], [2], [3]. Regarding the nonprehensile

rolling primitive, the ball and plate and the ball and beam

are the most investigated benchmark systems. The former

consists of a ball rolling without slipping on an actuated

plane. In such nonholonomic system, the controller steers
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the ball by moving the plate from its initial configuration

to a desired position along an admissible path [4]. A PID-

based controller is employed in [5], while a sliding mode

controller in [6]. The latter, instead, aims at stabilizing the

position of a ball along the beam. No full state feedback

linearization can be designed, but an approximated partial

feedback linearization is proposed in [7]. An output feedback

controller is introduced in [8]. A flatness based approach with

an exact feedforward linearization (EFL) is introduced in [9].

The butterfly juggling task has been investigated in [10], [11],

[12]. The stabilization of a disk free to roll on an actuated

disk is introduced in [13], while an input-state linearization is

proposed in [14]. Planning and control of rolling on general

curved shapes is studied in [15]. Finally, nonprehensile

rolling systems where the object’s center of mass does not

coincide with its geometric center are investigated in [16].

The scope of this manuscript is to find and apply a general

diffeomorphism to achieve an input-state linearization of the

whole dynamics. Such state transformation renders the sys-

tem in the so-called normal form (i.e., a chain of integrators)

without internal dynamics. Given some assumptions on the

shapes of both the object and the hand, EFL is employed to

stabilize the system. A connection with differential flatness

theory is also considered. Case studies validate the approach

through simulations and experiments, showing that the whole

system has good performance even when the assumptions

regarding the shapes are not satisfied.

Upon derivation of the general dynamic model for nonpre-

hensile planar rolling manipulation, two main novelties are

highlighted in the paper: (i) a link between nonprehensile

planar rolling manipulation and differential flatness is es-

tablished; (ii) given some assumptions on both the hand and

object shapes, a diffeomorphism to build a unified theoretical

framework to plan and control these tasks is derived.

II. MATHEMATICAL BACKGROUND

In order to make the paper self-contained, this section aims

to recap some basic definitions (see [17] for further details).

Consider a dynamic system in the affine state-space form

ẋ = f(x) + b(x)u, (1)

with x ∈ R
n and u ∈ R representing the state and the input,

respectively, while f : Rn → R
n and b : Rn → R

n are two

smooth vector fields. A system (1) is input-state linearizable

if there exists a diffeomorphism φ : Ω → R
n, where Ω ⊆

R
n, and a feedback control law u = α(x)+β(x)v, such that

the new state z =
[

z1 z2 . . . zn
]T

= φ(x) and input v



render the system (1) in the following normal form

{

żi = zi+1

żn = v,

(2a)

(2b)

with i = 1, . . . , n − 1. The following theorem gives the

conditions to verify whether (1) can be transformed in the

normal form (2).

Theorem 1: The nonlinear system (1) is input-state lin-

earizable if and only if there exists a region Ω where the

following conditions hold:

• The controllability matrix T = [b, adfb, . . . , ad
n−1

f
b]

is made by linearly independent vector fields in Ω.

• The set [b, adf b, . . . , ad
n−2

f
b] is involutive in Ω.

Proof: See [17], Theorem 6.2.

Notice that adif b = [f , adi−1

f
b], where i = 1, 2, . . .,

ad0fb = b, and [·, ·] denotes the Lie bracket [17]. Theorem

1 is not constructive to find the diffeomorphism φ(x). Then,

the following steps can be followed:

• In order to find z1 in the diffeomorphism φ(x), the

following equations have to hold

∂z1
∂x

adifb = 0, (3a)

∂z1
∂x

adn−1

f
b 6= 0, (3b)

with i = 0, . . . , n− 2.

• The complete transformation is given by

z = φ(x) =
[

z1 Lf z1 . . . Ln−1

f
z1
]T

. (4)

Notice that Li

f
h = Lf (L

i−1

f
h), where i = 1, 2, . . .,

L0
f
h = h and Lfh denotes the Lie derivative. Finally, the

transformation u = α(x)+β(x)v renders (1) as in (2), where

α(x) = −
Ln

f
z1

LbL
n−1

f
z1
, β(x) =

1

LbL
n−1

f
z1
. (5)

III. MODELLING OF NONPREHENSILE PLANAR ROLLING

Extending what presented in [14], the modelling of a

nonprehensile planar rolling manipulation system is now

derived.

Fig. 1. A general nonprehensile planar rolling manipulation system. In red
the world fixed frame Σw . In green the hand frame Σh, while in blue the
object frame Σo, placed at the respective centres of mass.

Referring to Fig. 1, let Σw be the inertia world fixed frame,

while let Σh be the frame attached to the hand, and Σo

the frame attached to the object: both are located at their

respective centres of mass. Let θh ∈ R be the angle of the

hand in Σw, while po ∈ R
2 and θo ∈ R are the position and

the orientation, respectively, of Σo in Σw.

The shapes of both the object and the hand are represented

through an arclength parametrization: sh ∈ R and so ∈ R

are the arclength parameters for the hand and the object,

respectively. At least locally, the shapes should be of class

C2. Locally, any point of the hand’s shape is given by

chh(sh) =
[

uh(sh) vh(sh)
]T

∈ R
2, expressed with respect

to Σh, while any point of the object’s shape is given by

coo(so) =
[

uo(so) vo(so)
]T

∈ R
2, expressed with respect

to Σo. Notice that sh increases counterclockwise along the

hand, while so increases clockwise along the object. With

this choice, the pure rolling assumption is ṡh = ṡo. Without

loss of generality, the frames Σw and Σh coincide at θh = 0,

the point sh = 0 is at the intersection between the vertical

(gravitational) axis of Σw and the hand’s shape, i.e. ch(0) =
[

0 vh(0)
]T

in Σw, and thus sh = so at all times during

rolling. Therefore, the contact location will be specified only

by sh throughout the remainder of the paper.

Assumption 1: The hand and the object maintain pure

rolling contact for all the times.

The arclength parametrization implies the property

‖ch′h ‖ = 1, with the symbol ′ indicating the derivative with

respect to the parameter sh. The same holds for coo(sh). At

the contact point chh(sh), the tangent vector to the shapes

is expressed as th(sh) = ch′h ∈ R
2 forming an angle

φh(sh) = atan2(v′h(sh), u
′

h(sh)) in Σh. The same tangent

can be expressed with respect to Σo with an angle φo(sh) =
atan2(v′o(sh), u

′

o(sh)). The signed curvatures of the shapes

are defined as

κh(sh) = φ′h(sh) = u′h(sh)v
′′

h(sh)− u′′h(sh)v
′

h(sh), (6a)

κo(sh) = φ′o(sh) = u′o(sh)v
′′

o (sh)− u′′o(sh)v
′

o(sh). (6b)

The relative curvature at the contact point is given by

κr(sh) = κh(sh) − κo(sh). Notice that κh(sh) > 0 and

κo(sh) < 0 denote convexity at the contact point for the hand

and the object, respectively. Hence, κr(sh) > 0 guarantees

a single contact point at least locally [14]. The following

constraint expresses the angle of the tangent th(sh) with

respect to Σw: θh+φh(sh) = θo+φo(sh). Therefore, taking

into account (6), the following relations hold

θo = θh + φh(sh)− φo(sh), (7a)

θ̇o = θ̇h + κr(sh)ṡh. (7b)

The following constraint expresses instead the coincidence

between the contact points on both the hand and the object

ph +R(θh)c
h
h(sh) = po +R(θo)c

o
o(sh), (8)

where ph ∈ R
2 is the position of Σh in Σw, while R(θ) ∈

SO(2) is the rotation matrix in the 2D space. Notice that the

relation Ṙ(θ) = R(θ̄)θ̇ holds with θ̄ = θ + π
2 .

Assumption 2: The hand can only rotate around its center

of mass.



Therefore, without loss of generality, placing Σw at the

hand’s center of mass and taking into account (8) yield po =
R(θh)c

h
h(sh)−R(θo)c

o
o(sh), and ṗo = γ(q)θ̇h+η(q)ṡh =

[

γ(q) η(q)
]

q̇, with q =
[

q1 q2
]T

=
[

θh sh
]T

, and

γ = R(θ̄h)c
h
h −R(θ̄o)c

o
o, (9a)

η = R(θh)c
h′
h −R(θo)c

o′
o − κrR(θ̄o)c

o
o, (9b)

in which dependencies have been dropped, while (7b) is

included and (7a) has to be plugged in.

The dynamic model is derived through the Euler-Lagrange

formalism. The so-called Lagrange function is given by

L = T − U , where T and U represent the kinetic

and potential energies, respectively. The dynamic model

equations are then given by
d

dt

∂L

∂q̇i
−

∂L

∂qi
= τi, with

i = 1, 2 and τi the associated generalized force acting

on the ith generalized coordinate. Given Assumptions 1

and 2, the kinetic and potential energies for a nonpre-

hensile planar rolling manipulation task are T (q, q̇) =
1

2

(

Ihθ̇
2
h +moṗ

T
o (q, q̇)ṗo(q, q̇) + Ioθ̇

2
o(q)

)

=
1

2
q̇TB(q)q̇

and U(q) = mog
[

0 1
]

po(q), where mo is the object mass,

Ih and Io are the hand and object inertias, respectively,

computed with respect to Σh and Σo, g is the gravity

acceleration (9.81 m/s2 is the value employed in Section V),

B(q) ∈ R
2×2 is the symmetric and positive definite mass

matrix whose elements are

b11(q) = Ih + Io +moγ
T(q)γ(q), (10a)

b12(q) = b21(q) = Ioκr(sh) +moγ(q)
Tη(q), (10b)

b22(q) = Ioκ
2
r(sh) +moη(q)

Tη(q). (10c)

By computing the Lagrange equations and considering the

Christoffel symbols of the first type [18], the dynamic model

can be written as B(q)q̈ + C(q, q̇)q̇ + g(q) = τ , where

τ =
[

τh 0
]T

represents the generalized input force with

τh the actuating torque around the hand’s center of mass;

g(q) =
[

g1(q) g2(q)
]T

=

(

∂U(q)

∂q

)T

and C(q, q̇) ∈

R
2×2 is a suitable matrix whose generic element is given by

cij(q, q̇) =
1

2

2
∑

k=1

(

∂bij(q)

∂qk
+
∂bik(q)

∂qj
+
∂bjk(q)

∂qi

)

q̇k,

(11)

with i, j = 1, 2. By neglecting dependencies, the dynamic

model can be written in the following extended form

b11θ̈h + b12s̈h + c11θ̇h + c12ṡh + g1 = τh, (12a)

b12θ̈h + b22s̈h + c21θ̇h + c22ṡh + g2 = 0, (12b)

with g1 = mog

(

−vhsθh − vo
∂cθo
∂θh

+ uhcθh − uo
∂sθo
∂θh

)

,

and g2 = mog(v
′

hcθh−v
′

ocθo−voc
′

θo
+u′hsθh−u

′

osθo−uos
′

θo
),

in which (7a) has to be plugged in, the elements of C(q, q̇)
are omitted for brevity, and cθ and sθ are used instead of

cos θ and sin θ, respectively.

IV. HYPOTHESES ON THE SHAPES AND INPUT-STATE

LINEARIZATION

During experimentation, when highly-geared harmonic

drive plus DC motors are present, the hand’s angular ac-

celeration is more convenient than the hand’s torque [14]. It

is thus suitable to rewrite (12) with θ̈h = ah as input

θ̈h = ah, (13a)

s̈h = −b−1
22 (b12ah + c21θ̇h + c22ṡh + g2), (13b)

where dependencies have been neglected. The equation re-

lating τh and ah is given by

τh = ξ(q, q̇) + σ(q)ah, (14)

with ξ(q, q̇) = g1+c11θ̇h+c12ṡh−
b12
b22

(g2+c21θ̇h+c22ṡh)

and σ(q) = b11 −
b212
b22

.

Assumption 3: The Coriolis terms c21(q, q̇) and c22(q, q̇)
are equal to zero.

Remark 1: Looking at (11), Assumption 3 is verified

when terms b12 = b21 and b22 in (10b) and (10c), respec-

tively, do not depend on q, and when b11 depends only on

θh. Looking at the particular expressions of bij , this means

that κr has to be constant, i.e. κ′r = 0, the combination

of the products γ(q)Tη(q) and η(q)Tη(q) do not depend

on q, and the product γ(q)Tγ(q) depends only on θh.

Considering (6) and (9), the aforementioned properties are

thus governed by the shapes of both the hand and the object.

Assumption 3 simplifies (13) as follows

θ̈h = ah, (15a)

s̈h = −
1

b22
(b12ah + g2(q)). (15b)

By indicating the state of the system as x =
[

x1 x2 x3 x4
]T

=
[

θh θ̇h sh ṡh
]T

, (15) can be

written in the affine state-space form (1) with u = ah and

f (x) =
[

x2 0 x4 − g2(x)
b22

]T

, (16a)

b =
[

0 1 0 − b12
b22

]T

. (16b)

In order to check whether (15) is input-state

linearizable, the controllability matrix T (x) =
[

b adf b ad2f b ad3fb
]

has to be invertible in a

certain region Ω, and the set given by the first three columns

of T (x) has to be involutive (see Theorem 1 in Section II).

Taking into account (16), the detailed expression of the

controllability matrix is

T (x) =









0 −1 0 0
1 0 0 0

0 b21
b22

0 t34
− b21

b22
0 t43 t44









, (17)

with t34 =
1

b22

∂g2(x)

∂x1
−
b12
b222

∂g2(x)

∂x3
, t43 =

b12
b222

∂g2(x)

∂x3
−

1

b22

∂g2(x)

∂x1
, and t44 = x4

b12
b22

∂2g2(x)

∂x23
−
x2
b22

∂2g2(x)

∂x21
.



Defining the region Ω =
{

x ∈ R
4 :

∂g2(x)

∂x1
6=

b12
b22

∂g2(x)

∂x3

}

, it is possible to prove that T (x) in (17) is

made by linearly independent columns: the first three of them

build an involutive set (proofs are omitted for brevity). The

system (15) is then input-state linearizable in Ω.

To render (15) in the normal form (2), a diffeomorphism

φ(x) (4) has to be found. Hence, in order to compute the

first component z1, equations (3) have to hold for the vector

fields (16). In particular, looking at the expression of the

first three columns of T (x), condition (3a) yields
∂z1
∂x2

−

b12
b22

∂z1
∂x4

= 0,
b12
b22

∂z1
∂x3

−
∂z1
∂x1

= 0, and
∂z1
∂x4

t43 = 0. The

solution to this system is then given by z1 =
b12
b22

x1 + x3. It

is easy to verify that such a choice for z1 also satisfies (3b).

Therefore, the complete diffeomorphism is given by

φ(x) =









z1
z2
z3
z4









=









y
ẏ
ÿ

y(3)









=













b12
b22
x1 + x3

b12
b22
x2 + x4

− g2(x)
b22

− 1
b22

(

∂g2(x)
∂x1

x2 +
∂g2(x)
∂x3

x4

)













,

(18)

where y(j) is the jth-order derivative, with j ≥ 3. Consi-

dering (5), the input transformation ah = α(x) + β(x)v
finally renders (15) in the normal form (2), with

α(x) = −

(

∂2g2(x)
∂x2

1
x2 −

g2(x)
b22

∂g2(x)
∂x3

+ ∂2g2(x)
∂x2

3
x4

)

(

∂g2(x)
∂x1

− b12
b22

∂g2(x)
∂x3

) ,

(19a)

β(x) = −b22

(

∂g2(x)

∂x1
−
b12
b22

∂g2(x)

∂x3

)

−1

. (19b)

This is the core result since, under Assumptions 1, 2 and 3, a

general diffeomorphism is found to change a nonprehensile

2D rolling manipulation system into a normal form where

simple linear controllers can be applied.

Therefore, in general, any suitable approach can be em-

ployed to control the normal form (2). The exact feedfor-

ward linearization (EFL) technique [9] is here considered

. In detail, a change of coordinates is applied to (15)

through (18). To get the normal form, the EFL technique does

not use the feedback transformation ah = α(x)+β(x)v, but

ah = α(x⋆) + β(x⋆)v, where x⋆ is the desired state1 (in

feedforward). The new virtual input v is instead designed as

an extended PIDn−1 plus a feedforward action

v = z⋆4 +

4
∑

i=0

kiei, (20a)

e0 =

∫ t

o

e1(τ)dτ, (20b)

ei = z⋆i − zi, (20c)

1Eventually retrieved from z⋆ through φ−1.

with ki positive gains such that the resulting characteristic

polynomial is Hurwitz.

Remark 2: A SISO input-state linearizable system is also

differentially flat with output y = h(x) = z1 (see Appendix).

Therefore, given Assumptions 1, 2 and 3, a nonprehensile

planar rolling manipulation system is differentially flat with

flat output y = b12
b22
x1 + x3. For both motion planning and

controlling purposes under differential flatness theory, it is

essential to express the state x and input ah as function of y
and its derivatives (see (22) in Appendix). In many cases

this might be cumbersome. Even if it is possible to use

some symbolic mathematical computation software, some

guidelines are provided in the following. The first step is

to write x3 = y − b12
b22
x1 and x4 = ẏ − b12

b22
x2 from (18).

Later, substitute x3 and x4 from the previous step in the last

row of (18) and solve for x2. Plug x3 from the first step in

ÿ = − g2(x)
b22

and solve for x1 (this will be function of only

y and ÿ). Substitute back x1 in x2 and, in turn, in x3 and x4
from previous steps (it comes out that x3 depends only on

y and ÿ, while x2 and x4 are generally function of y, ẏ, ÿ
and y(3)). Finally, it is possible to express ah as function of

y and its derivatives by considering ah = α(x) + β(x)y(4)

from (2b), and substituting xi, with i = 1, . . . , 4, from the

previous steps. Notice that not every desired trajectory can

be imposed to y. As it will be highlighted in the case studies,

some desired behaviours could make unbounded the state of

a nonprehensile planar rolling manipulation system.

V. CASE STUDIES

A. Ball and beam

Fig. 2. A representation of the ball and beam system. In red the world
fixed frame Σw . In green the hand frame Σh, while in blue the object frame
Σo, placed at the respective centres of mass.

1) Formulation: Referring to Fig. 2, the beam can rotate

around its center of mass while the ball can only roll

along the beam. The shape of the hand, i.e. the beam, is

parametrized through chh(sh) =
[

−sh dh
]T

, with dh ∈ R
+

a fixed distance between the beam’s center of mass and its

surface where the ball rolls. The ball’s shape is parametrized

by coo(sh) = −ρo
[

sin sh
ρo

cos sh
ρo

]T
, with ρo ∈ R

+ the

radius of the ball. Considering (6), the signed curvatures

of the beam and the ball are κh = 0 and κo = −1/ρo,

respectively. The relative curvature is thus given by

κr = 1/ρo. The ball’s angular velocity is instead given

by (7b) θ̇o = θ̇h +
ṡh
ρo

. In order to compute the mass matrix

of the system, the vectors γ(q) and η(q) in (9) are γ(q) =
[

−(ρo + dh)cθh + shsθh −(ρo + dh)sθh − shcθh
]T
, and

η(q) = −
[

cθh sθh
]T

. Therefore, the parameters in (12)



are b11 = Ih + Io + mod
2
h + 2modhρo + moρ

2
o + mos

2
h,

b12 = b21 = Io
ρo

+ modh + moρo, b22 = Io
ρ2
o
+ mo,

c11 = moshṡh, c12 = moshθ̇h, c21 = moshθ̇h,

c22 = 0, g1 = −mog((dh + ρo) sin θh + sh cos θh)
and g2 = −mog sin θh. Considering the acceleration ah of

the beam as input, the system can be written as in (13),

with τh as in (14). However, it is possible to verify that

Assumption 3 is not verified for the ball and beam case

since c21 6= 0. Even if κr is constant and the products

γ(q)Tη(q) and η(q)Tη(q) do not depend on q, the product

γ(q)Tγ(q) does not depend only on θh, but it depends on

the arclength parameter. Therefore, the ball and beam system

is not input-state linearizable. This result is well known in

the literature, nevertheless, in many cases it is possible to

approximate c21 to zero [7]. This is true for small velocities

of the beam, small masses of the ball and not so long

beam. Hence, by putting c21 = 0, only for control design

purposes, it is possible to write the approximated ball and

beam system like in (15). The affine state space form of

the approximated ball and beam system has the following

vector fields (16) f(x) =
[

x2 0 x4
moρ

2
og sin x1

Io+moρ2
o

]T

and b =
[

0 1 0 −ρo
moρ

2
o+dhmoρo+Io
Io+moρ2

o

]T

. Computing

the matrix T (x) as in (17), it is possible to verify that

the approximate dynamic model is input-state linearizable

in the region Ω = {x ∈ R
4 : cos θh 6= 0 ⇒ |θh| <

π
2 }.

Notice that such a region is not restrictive because, with

no bound on other states, Ω covers all practical situations

since outside it the ball falls down from the hand. Finally,

it is possible to compute the diffeomorphism (18) φ(x) =
[

b12
b22
x1 + x3

b12
b22
x2 + x4

mog
b22

sinx1
mogx2

b22
cosx1

]T

,

yielding the normal form

ż1 = z2, (21a)

ż2 = z3, (21b)

ż3 = z4, (21c)

ż4 = β(x)|−1

x=φ−1
(z)

(ah − α(x)|x=φ−1
(z)

), (21d)

with α(x) = mogx2 tanx1 and β(x) = b22
mog cosx1

from (19). The control is then performed with the EFL

technique described in Section IV.

For the differential flatness, the flat output is y = h(x) =
b12
b22
x1 + x3. Following the steps in Remark 2, the state

variables can be then expressed as function of y and its

derivatives x1 = asin
(

b22ÿ
mog

)

, x2 = b22y
(3)

mog cos(asin( b22 ÿ

mog ))
,

x3 = y − b12
b22

asin
(

b22ÿ
mog

)

and x4 = ẏ − b12y
(3)

mog cos(asin( b22 ÿ

mog ))
.

Remark 3: Notice that within this framework it is not

possible to choose as flat output only the arclength parameter

as usually done in the literature [7], [9]. This is because the

dynamic model of the ball and beam system here derived

is slightly different from [7] since it takes into account

the distance dh between the hand’s center of mass and the

rolling surface. An approximation to neglect the hand and

put Σw aligned with the ball’s center of mass is instead

usually considered: this yields b12 = 0, meaning that

moγ(q)
Tη(q) = −Ioκr(sh). Such approximation, verified

to be effective in the practice in the above cited papers,

is not considered here since the scope of such a work is

to consider a general framework for nonprehensile planar

rolling manipulation in which the assumption of b12 = 0
would be too much restrictive and valid only for the ball

and beam case. The price to pay is the impossibility to

have as flat output y = sh = x3. However, since x3 =

y − b12
b22

asin
(

b22ÿ
mog

)

, with y = b12
b22
x1 + x3, it is possible to

approximate y ≃ x3 when b22 ≫ b12.

2) Simulations: Simulations are performed for the ball

and beam system. The control law has been designed with

reference to the approximated model with c21 = 0. The

ball and beam dynamic system, instead, has been simulated

without such approximation. The value employed to simulate

the effective ball and beam system are: mo = 0.5 kg,

ρo = 10 cm, Ih = 0.2 kg m2, dh = 1 cm and Io = moρ
2
o.

To emulate parameter uncertainties, such values have been

augmented of the 5% in the control law. A time delay of

about 0.01 s is considered for the measurements.

As a first task, the hand starts at the desired condition

θ⋆h = 0, but the ball is placed at sh = −1 m while its

desired configuration is at s⋆h = 0. The initial and desired

velocities for both the hand and the arclength parameter are

0. Looking at the diffeomorphism φ(x), the goal can be

achieved through z⋆ = 0. The control gains ki with i =
0, . . . , 4 in (20a) have been chosen as (0.01, 81, 108, 54, 12),
respectively. The errors ei in (20c) asymptotically go to zero

as shown in Fig. 3(a), meaning that the state z tends to

zero. As previously highlighted, this means also that the state

x =
[

θh θ̇h sh ṡh
]T

goes to zero as desired: this is

depicted in Fig. 3(b). The behaviour of the torque τh in (14)

is represented in Fig. 3(c). The time history does not start

from zero since at the beginning the ball is not aligned with

the hand’s center of mass causing a torque around this last.

The balancing task is then satisfied despite the control law

has been designed on an approximate system with parameters

uncertainty.

As noticed in Remark 3, it is not possible to impose a

desired behaviour directly to sh = x3, but to y = b12
b22
x1+x3.

However, since the chosen parameters (not so far from a real

system) are such that b22 ≫ b12, it is a good approximation

to impose the reference behaviour for sh to y. As a second

test, it is then desired that z⋆1 = y⋆ = 0.05 cos t, with t the

time. The desired values for z⋆i , with i = 2, . . . , 4, are the

time time derivatives of y⋆. The control gains are chosen

like the previous test, while initially the ball is placed at

sh = −10 cm. Again, the errors ei in (20c) go asymptotically

to zero as shown in Fig. 4(a). Fig. 4(b) shows that the time

history of sh follows the desired trajectory given to y⋆,

validating the considered approximation. Therefore, under

the conditions given in Remark 3, differential flatness can

be employed also under this framework as in literature [7],

[9]. The behaviour of τh in (14) is represented in Fig. 4(c).

Again, the related plot does not start from zero because of

the misalignment of the ball with respect to the hand’s center
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Fig. 3. Time histories related to the first simulation test about the ball and beam system.
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Fig. 4. Time histories related to the second simulation test about the ball and beam system.

of mass.

Finally, notice that it is not possible to stabilize the ball

with a non-zero beam’s angle. Looking at the dynamic

model, this requires a constant torque resulting in unbounded

velocities.

B. Disk on disk (DoD)

Fig. 5. A representation of the disk on disk system. In red the world fixed
frame Σw . In green the hand frame Σh, while in blue the object frame Σo,
placed at the respective centres of mass.

1) Formulation: This case study considers the balancing

of a disk free to roll on an actuated disk. Referring to

Fig. 5, the shape of the hand, i.e. the actuated disk, is

parametrized by chh(sh) = ρh
[

− sin sh
ρh

cos sh
ρh

]T
, with

ρh ∈ R
+ the radius of the hand. The upper disk’s shape is

parametrized as in the previous case study. Considering (6),

the relative curvature is given by κr =
ρh + ρo
ρhρo

. The

upper disk angular velocity is given by θ̇o = θ̇h + κrṡh.

The vectors γ(q) and η(q) are computed like in (9):

γ(q) = −(ρh + ρo)
[

cos
(

θh + sh
ρh

)

sin
(

θh + sh
ρh

)]T

,

and η(q) = −ρoκr

[

cos
(

θh + sh
ρh

)

sin
(

θh + sh
ρh

)]T

.

Therefore, the parameters in (12) are b11 =

Ih + Io +mo(ρh + ρo)
2, b12 = b21 = Ioκr +mo

(ρh+ρo)
2

ρh
,

b22 = Ioκ
2
r + moρ

2
oκ

2
r, c11 = c12 = c21 = c22 = 0,

g1 = −mog(ρh + ρo) sin
(

θh + sh
ρh

)

and g2 =

−mogρoκr sin
(

θh + sh
ρh

)

. Notice that the quantity

θh + sh
ρh

is the angle of the object’s center of mass

with respect to the vertical axis of Σw. It is possible

to verify that the DoD dynamic model fully verifies

Assumption 3. Hence, considering the acceleration

ah of the actuated disk as input, the DoD dynamics

can be written as in (15) with τh as in (14). The

affine state space form assumes the following vector

fields (16) f(x) =

[

x2 0 x4
mogρo sin

(

x1+
x3
ρh

)

Ioκr+moρ2
oκr

]T

and b =
[

0 1 0 −
moρ

2
o+moρhρo+Io

κr(moρ2
o+Io)

]T

. Computing

the matrix T (x) as in (17), it is possible to verify that

the approximate dynamic model is input-state linearizable

in the region Ω = {x ∈ R
4 : cos

(

x1 +
x3

ρh

)

6= 0 ⇒

|x1 + x3

ρh
| < π

2 }. Notice that such a region is not

restrictive because, with no bound on other states, Ω
covers all practical situations since outside it the disk

falls down from the hand. Finally, diffeomorphism (18) is



φ(x) =

[

b12
b22
x1 + x3

b12
b22
x2 + x4

mogρo sin
(

x1+
x3
ρh

)

Ioκr+moρ2
oκr

mogρoκr

(

x2+
x4
ρh

)

cos
(

x1+
x3
ρh

)

b22

]T

, with α(x) =

sin
(

x1+
x3
ρh

)

x2−

(

mogρoκr
b22ρh

sin
(

x1+
x3
ρh

)

+
x4
ρ2
h

)

cos
(

x1+
x3
ρh

)

(

1−
b12

b22ρh

)

cos
(

x1+
x3
ρh

) and

β(x) = b22

(

mogρoκr

(

1− b12
b22ρh

)

cos
(

x1 +
x3

ρ3

))

−1

. The

control is again performed with the EFL technique described

in Section IV.

Within differential flatness, the flat output is y = h(x) =
b12
b22
x1 + x3. Following Remark 2, the state variables can be

expressed as function of y and its derivatives. Only x1 =
(

1− b12
b22ρh

)

−1 (

asin
(

Ioκr+moρ
2κr

mogρo
ÿ
)

− y
ρh

)

and x3 = y−

b12ρh

b22ρh−b12

(

asin
(

Ioκr+moρ
2κr

mogρo
ÿ
)

− y
ρh

)

are here expressed

for brevity.

Remark 4: Notice that in this case study the only possibil-

ity of balancing is with the object directly above the hand’s

center of mass, i.e. θh+
sh
ρh

= 0. As noticed in [14], any other

balancing position leads to constant angular acceleration

resulting in unbounded velocities.The differential flatness

loses thus some sense for the disk on disk.

Looking at φ(x), stabilizing the origin z = 0 is equivalent

to stabilizing x = 0 and then x1 +
x3

ρh
= 0. However, notice

that through the following further change of coordinates

z̄ =

[

z1 −

(

b12 − b22ρh
b22

θ⋆h

)

z2 z3 z4

]T

it is possible

to balance the object with θh at a desired constant angle θ⋆h =
x⋆1. It is easy to verify that such additional diffeomorphism

does not change the normal form (2) expressed now in terms

of z̄. With some algebra, it is possible to show that stabilizing

the origin z̄ = 0 yields x1 = x⋆1, x1 + x3

ρh
= 0 and

x2 = x4 = 0.

Fig. 6. Experimental prototype of the disk-on-disk system available at
PRISMA Lab.

2) Experiments: Performance are evaluated through some

experiments by using the experimental disk on disk prototype

shown in Fig 6. The hand is actuated by a DC motor

(Harmonic Drive RH-8D 3006) equipped with a harmonic

drive whose gearhead ratio is 100 : 1. Rubber bands of

small thickness encircle both the object and the hand. The

commands to the motor are provided by an ARM CORTEX

M3 microcontroller (32 bit, 75 MHz). The microcontroller

receives current references from an external PC through a

USB cable. The output of the microcontroller is the current

reference for the motor servo, which is transformed in torque

for the hand disk. Therefore, the control v in (20a) is

first transformed in ah = α(x⋆) + β(x⋆)v and then in

τh as in (14). Finally τh has to be transformed through

a current control law as icom = (1/ςm)(τh + µdθ̇h +
fssgn(θ̇h)) + kp(θ

d
h − θh) + kd(θ̇

d
h − θ̇h), where θdh and

θ̇dh are the desired hand position and velocity, respectively,

obtained by integrating ah; kp and kd are two gains, set to

10 and 1, respectively, during the experiments; ςm = 4.2
is the motor constant available from the motor data-sheet;

µd = 0.29 is a viscous coefficient and fs = 0.3 is the

torque required to overcome friction at rest. These two last

parameters have been experimentally identified. In addition,

the microcontroller also provides the measured position of

the hand to the external PC. The position of the upper disk,

instead, is given by an external visual system. This consists

of a uEye UI-122-xLE camera providing (376× 240) pixel

images to the PC at 75 Hz, that is also the controller sample

rate. With respect to [13], [14] this is a slower sample time.

Moreover, with respect again to the two above cited works,

the employed set-up is mounted in full gravity between two

plexiglass plates. Finally, the other parameters are ρh =
15 cm, ρo = 7.5 cm, mo = 16 g, Ih = 5.3 ·10−3 kg m2 and

Io = 12.15 · 10−5 kg m2, while the control gains ki, with

i = 0, . . . , 4, in (20a) are (0.7, 180, 70, 110, 10).
Experiments are focused on the balancing of the object

on the upright unstable position. A video of the performed

experiments is present in the multimedia attachment, along

with the case of stabilizing the angle of the hand at a desired

θ⋆h. Since θh starts from 0 and the upper disk starts at about

θh + sh
ρh

= 5 degrees with respect to the vertical axis of

Σw, then sh has an initial value of 1.57 cm. Therefore, to

stabilize the upright unstable position, the desired values for

the normal form state system is z⋆ = 0: this yields x⋆ = 0

and then θh + sh
ρh

= 0. After the stabilization, the object

has been voluntarily perturbed by pushing it away from the

balancing position: the control law is able to recover such

perturbation as shown in the time histories of Fig. 7. The

time histories of ei in (20c) go to zero as in Fig. 7(a). The

oscillations are because of the noisy visual measurements

and the numerical derivation, without filtering, performed to

obtain the velocity measurements of θ̇h, from the encoder,

and ṡh, from the visual system. As mentioned above, since z

goes to zero, also x goes to zero as represented in Fig. 7(b).

The time history of the angle θh +
sh
ρh

of the object’s center

of mass with respect to the vertical axis of Σw is depicted in

Fig. 7(c): the balancing task is then successfully achieved.

It is worth highlighting that an input-state linearization

technique for the sole DoD system is presented in [14].

Nevertheless, another change of coordinate is performed in

that paper before applying the final diffeomorphism, while

an exact feedback linearization control is used instead of the

EFL approach here employed.

VI. CONCLUSION AND FUTURE WORK

A general framework to control nonprehensile planar

rolling dynamic manipulation systems has been derived in
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Fig. 7. Time histories related to the first simulation test about the disk on disk system.

this paper. In particular, a dynamic model for these tasks

has been introduced. Under certain assumptions on both the

hand and the object shapes, these systems are input-state

linearizable with output y = b12
b22
θh + sh. A connection with

the differential flatness theory has been also highlighted.

Simulation and experiments for two case studies have been

presented. The proposed method works also in cases where

the considered assumptions are not fully verified. Future

work is devoted to removing Assumptions 2 and 3.

APPENDIX

The single-input system (1) is differentially flat [19], [20]

if, and only if, there exists a flat output y = h(x) ∈ Cn

such that it is possible to express the state and the input as

function of the flat output and its derivatives

x = δ(y, ẏ, . . . , y(n−1)), (22a)

u = ψ(y, ẏ, . . . , y(n)), (22b)

where δ : R × . . . × R → R
n and ψ : R × . . . × R → R

are smooth functions at least in an open set of R
n and

R
n+1, respectively. Differentially flat systems are useful

when explicit trajectory generation is required since it is

possible to determine the full behaviour of the system from

the flat output and its derivatives. It is then possible to

map them in the proper input by considering the nominal

control u⋆ = ψ(y⋆, ẏ⋆, . . . , y⋆(n)) in feedforward, where

y⋆ is the desired behaviour of the flat output. The exact

feedback linearizability (i.e., conditions of Theorem 1 are

verified and it is possible to find the diffeomorphism φ(x)
as in (4)) is a necessary and sufficient condition for flatness

of a system [19]. Therefore, each system (1) that is input-

state linearizable and that can be transformed in the normal

form (2) through the diffeomorphism (4) is also a differen-

tially flat system with flat output y = h(x) = z1, and in

which relations (22) hold.

REFERENCES

[1] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” International Journal of

Robotics Research, vol. 18, no. 1, pp. 64–92, 1999.

[2] M. T. Mason, “Progress in nonprehensile manipulation,” International

Journal of Robotics Research, vol. 18, no. 11, pp. 1129–1141, 1999.

[3] M. Lynch, K and T. D. Murphey, “Control of nonprehensile ma-
nipulation,” in Control Problems in Robotics, ser. Springer Tracts in
Advanced Robotics, A. Bicchi, D. Prattichizzo, and H. Christensen,
Eds. Springer Berlin Heidelberg, 2003, vol. 4, pp. 39–57.

[4] Z. Li and J. Canny, “Motion of two rigid bodies with rolling con-
straint,” IEEE Transactions on Robotics and Automation, vol. 6, no. 1,
pp. 62–72, 1990.

[5] S. Awtar, C. Bernard, N. Boklund, A. Master, D. Ueda, and K. Craig,
“Mechatronic design of a ball-on-plate balancing system,” Mechatron-

ics, vol. 12, no. 2, pp. 217–228, 2002.
[6] J. H. Park and Y. J. Lee, “Robust visual servoing for motion control of

the ball on a plate,” Mechatronics, vol. 13, no. 7, pp. 723–738, 2003.
[7] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via approx-

imate input-output linearization: The ball and beam example,” IEEE

Transactions on Automatic Control, vol. 37, no. 3, pp. 392–398, 1992.
[8] A. Teel and L. Praly, “Tools for semiglobal stabilization by partial state

and output feedback,” SIAM Journal on Control and Optimization,
vol. 33, no. 5, pp. 1443–1488, 1995.

[9] V. Hagenmeyer, S. Streif, and M. Zeitz, “Flatness-based feedforward
and feedback linearisation of the ball & plate lab experiment,” in Pro-

ceedings of the 6th IFAC-Symposium on Nonlinear Control Systems,
2004.

[10] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie, “The roles of shape
and motion in dynamic manipulation: The butterfly example,” in 1998

IEEE International Conference on Robotics and Automation, Leuven,
B, 1998, pp. 1958–1963.

[11] M. Cefalo, L. Lanari, and G. Oriolo, “Energy-based control of the
butterfly robot,” in 8th International IFAC Symposium on Robot

Control, Bologna, I, 2006, pp. 1–6.
[12] M. Surov, A. Shiriaev, L. Freidovich, S. Gusev, and L. Paramonov,

“Case study in non-prehensile manipulation: Planning perpetual rota-
tions for “Butterfly” robot,” in 2015 IEEE International Conference on

Robotics and Automation, Seattle, WA, USA, 2015, pp. 1484—1489.
[13] J.-C. Ryu, F. Ruggiero, and K. M. Lynch, “Control of nonprehensile

rolling manipulation: Balancing a disk on a disk,” in 2012 IEEE

International Conference on Robotics and Automation, St. Paul, MN,
USA, 2012, pp. 3232–3237.

[14] J.-C. Ryu, F. Ruggiero, and K. M. Lynch, “Control of nonprehensile
rolling manipulation: Balancing a disk on a disk,” IEEE Transactions

on Robotics, vol. 29, no. 5, pp. 1152–1161, 2013.
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