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Passivity-based control for a rolling-balancing
system: The nonprehensile disk-on-disk.
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Abstract—In this paper, we propose a passivity-based
control design for a rolling-balancing system called the
disk-on-disk. The stabilization of the desired equilib-
rium is obtained via energy shaping and damping injec-
tion. The disk-on-disk is an underactuated mechanical
system composed of two disks arranged one on top of
the other. The top disk, which we call the object, is
free to roll without slipping on the lower disk, which
we call the hand. The hand is actuated by a controlled
torque, while the object is unactuated. The control
objective is to balance the object at the upright position
and drive the hand to a desired angle. We design an
energy shaping controller without solving the partial
differential equations, which rise from the matching
equation. We assess the performance of the controller
by both simulations and experiment results, which also
verify the practical applicability of the design approach.

Index Terms—Rolling-balancing systems, passivity-
based control, nonprehensile systems, energy shaping.

I. INTRODUCTION

ANIPULATING an object without grasping is a

task known as mnonprehensile manipulation. Al-
though this class of manipulation problems has received
great attention by the research community, it is still rather
far from being fully solved for robotic applications [1],
[2], [3]- There are several advantages in nonprehensile dy-
namic manipulation. Since the object is not caged between
fingertips during the task, it is possible to manipulate
the object outside the robot workspace by allowing both
contact and non-contact interaction between the robot and
the object, e.g. by throwing and catching the object [1].
Moreover, it is possible to control more object degrees of
freedom than the actuators of the robotic platform [3], [4].
In several industrial applications it is not directly possible
to manipulate the object through firm or fine/precise
manipulation, therefore only nonprehensile manipulation
is allowed to accomplish the task, e.g. using vibratory
platforms [1]. Dynamic nonprehensile manipulation tasks
are performed by surgeons with their instruments during
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operations, for example when they push away an organ
or an artery. For this class of systems, the control design
has to take into account the dynamics of both the robot
and the object, which increases the complexity of the
design. Thus, challenging problems in high-speed sensing
and control fields arise in nonprehensile manipulation.

A classical approach for control design of dynamic
nonprehensile tasks is to divide a complex action into
simpler primitives and subtasks such as rolling, push-
ing, throwing, batting, and juggling, to mention some
of them [1], [5], [6]. In this paper, we concentrate on a
particular primitive of nonprehensile manipulations, that
is rolling, considering the disk-on-disk (DoD) system. We
address the stabilization-balancing problem of the DoD
using passivity-based control and port-Hamiltonian (pH)
systems (see [7] and [8] for a survey on these topics). The
DoD controller proposed in this paper is designed under
the assumption the disks are in contact. Such assumption
cannot be ensured in the physical set-up since the disks
are no mechanically attached. However, the experiments
show that the controller performs satisfactory well. Similar
considerations have been used in [5], [6], [9].

Among other examples of nonprehensile rolling prim-
itives we can mention the ball and plate (B&P), the
ball and beam (B&B) and the “butterfly” system. The
B&P is a nonholonomic system for which it has been
shown that there exist an admissible path between any two
configurations [10]. A PID-based control was proposed in
[11] to stabilize the linearized model and a sliding mode
controller is instead employed in [12]. The B&P problem
is also related to the field of spherical robots [13]. Two
planning methods for this class of systems are presented
in [14], which are based on minimum energy and time
approaches. The B&B system considers the problem of
stabilizing the position of a ball along a beam. Since B&B
system is not full-feedback linearizable, an approximated
partial feedback linearization (PFL) and output feedback
controller were proposed in [15] and [16] respectively.
Alternatively, an interconnection and damping assignment
passivity-based control (IDA-PBC) design is proposed in
[17], a backstepping controller is designed in [18], and a
sliding control law is instead proposed in [19]. Nonpre-
hensile rolling systems where the ball’s (or disk’s) center
of mass does not coincide with its geometric center are
more challenging (see for example [20]). The control of
a dynamically balanced asymmetrical sphere with three
internal rotors is described in [21]. Finally, the so-called
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“butterfly” juggling action, in which planar rolling is
involved, has been investigated in [4], [6], [22]. A controller
for a ball rolling in an asymmetrical bowl that can be
accelerated along one linear direction is proposed in [23].
Planning and control problems of a ball rolling on curved
surfaces are also investigated in [24], [25].

In particular, in this paper we consider the rolling
between two circular surfaces as the primitive. The case
study is the balancing of a disk that is free to roll on an
actuated disk. We refer to the former disk as the object,
and the latter as the hand. This system, introduced in [9],
can be considered as an example for nonprehensile rolling
primitive. The theoretical and technological novelties in-
troduced by this paper are as follows:

o In [5] and [9] the DoD controller is designed using
feedback linearization and backstepping, respectively.
The backstepping design considers only the stabiliza-
tion of the object at the upright position, leaving the
hand uncontrolled. The feedback linearization con-
troller stabilizes the positions of both the object and
the hand. In this paper, we propose to shift the control
design to the passivity approach to stabilize both
the object and the hand to the desired equilibrium.
An important feature of this approach is that the
control design exploits the energy and interconnection
properties of the physical system without the need of
nonlinear cancellations, which in general compromise
the robustness of the closed loop. This approach
differs from the standard feedback linearization where
a linear dynamics is imposed at the expense of can-
celling all the nonlinear dynamics of the system.

o The passivity-based controller is developed via energy
shaping and damping injection [17]. We follow the ap-
proach in [26], where the energy is shaped without the
need of solving partial differential equations (PDEs).
In [26] the requirement of energy shaping that the
closed loop should preserve the form of a mechanical
system is dropped. However, we show that the con-
troller proposed here satisfies the so-called matching
equation [17]. Therefore, the controller belongs to the
class of IDA-PBC controllers, and the closed loop can
be written in the pH form. The control design here is
simpler since there is no need of solving PDEs.

e In this work we develop a less demanding hardware
with respect to [5], [9]. Indeed, the camera and control
frame-rate is downgraded from 800 to 75 Hz. In
addition, the disks are vertically aligned, and thus
the full-gravity field is considered. The experimental
results show that the proposed controller design has
a good performance on this less demanding set-up.

o In the experiments, we do not consider the addition of
integral action to robustify the controller as done in
[5]. However, the proposed passivity-based controller
performs satisfactorily well and cope with uncertain-
ties without the need of an integral action redesign.

The outline of the paper is as follows. The pH framework
is briefly revised in Section II. The dynamic model of

the DoD system and the control design are discussed
in Section III. Section IV presents simulations of the
control system, whilst the experiment results are shown
in Section V. Final discussions are provided in Section VI.

II. PORT-HAMILTONIAN FRAMEWORK

The dynamics of a general class of mechanical systems
can be described as a pH system as follows

HIE A AR P LD

where g € R™ are the generalized coordinates, p € R™ are
the generalized momenta defined as p = M¢, 7 € R™ are
the generalized input forces, G : R™ — R™*"™ is the input
matrix, and I, is the n—dimensional identity matrix. The
function H : R"*" — R, which represents the total energy
of the system, is the Hamiltonian given by

H(g,p) = %pTM’l(Q)er V(a), (2)
where M : R™ — R™*" is the mass matrix and V : R — R
is the potential energy.

A feature of pH systems is that they are cyclo-passive
with input 7 and output y = G (q)M~'p, and storage
function H(q,p). Moreover, if H(q,p) is bounded from
below, then the pH system is passive [8].

The stabilization problem of the mechanical system (1)
using IDA-PBC is to find a control law 7 = 7(gq,p) such
that the closed loop has a stable equilibrium at the desired
point (¢, p) = (gx,0), with Lyapunov function

LT M (@)p + Vo), (3)

Hy(q,p) = 5

with My > 0, and ¢, = argmin Vy(g), and this minimum
is isolated. The matrix My : R™ — R™*™ and the function
Vi : R™ — R are, respectively, the desired mass matrix and
desired potential energy to be chosen. It is also required
that the closed-loop dynamics retain the pH form

P
where Js is a skew-symmetric matrix to be chosen, and
R=R" >0 is the damping injection matrix [17].

M_lMd

Jo(a.p) — Riq,p) | ¥ Ha(@:p): (4)

0
7MdM71

In the most general case, the control design using IDA-
PBC for mechanical systems involve the task of solving
a set of PDEs (see e.g. [17]). Indeed, the control law
rendering the system (1) in the closed-loop dynamics of
the form (4) should satisfy the so-called matching equation

~VH+Gr=-MyM 'V,Hy+ (Jo—R)M;'p. (5)

However, there exist constructive results to overcome the
difficulty of solving the PDEs [26], [27].
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III. ROLLING MANIPULATION.

The DoD balancing system is an example of a primitive
for nonprehensile manipulation. The system is shown in
Fig. 1. The bottom disk represents the manipulator, and
the disk on top is the object to be balanced in the upright
position. For the purpose of control design, we make the
following assumptions:

o The hand rotates about its centre P, whilst there is

no translational motion.

e The object is always in point contact with the hand.

o The object rolls on the hand without slipping.

Notice that these assumptions imply that the object can-
not depart from the hand. Only from the control design
perspective, the problem thus becomes a prehensile ma-
nipulation problem. However, the real system does not
necessary satisfy these assumptions and it is intrinsically
a nonprehensile system. As it will be shown in the ex-
periments, the controller performs satisfactory even if the
assumptions are not a priori ensured at all time.

The dynamic model of the DoD, under the assumptions
above, has been derived in [9] using the coordinates (6, s),
where @ is the angle of the hand and s is the length of the
arc from the g-axis to the contact point, with the positive
convention taken on the counterclockwise direction (see
Figure 1). A detailed formulation of the DOD model in
these coordinates can be found in [9].

Hand
mMh, [h

Fig. 1. Idealised physical scheme of the disk-on-disk system.

A. Disk-on-Disk model

A model, more convenient for our control design, is
obtained by expressing the DoD dynamics given in [9] in
coordinates (0, ), where ¢ is the deviation angle of the
object from the upright position. The deviation angle is
related with € and s as follow

s

p=0+—. (6)

Using this change of coordinates, the dynamics of the DoD

can be equivalently written in the pH form by defining?
g = col(f, ¢) and momenta p = col(py, p2) = Mg, with

My
Moy |7

Th

My

M= [ M (7)

'n this paper, a column vector v € R™ with entries a; with i =
1,---,n is noted as v = col(a, -+ ,an).

where M1y = (mo+mp)re, M1z = Moy = —mori(ro+71),
Mas = 2m,(r, +1,)?, and potential energy function
V(p) = ¢gcos(yp), (8)

where ¢, = mog(rp+7,), g is the gravity constant, I; and
rp, are the moment of inertia and the radius of the hand,
respectively. The moment of inertia, radius and mass of
the object are noted as I,, r, and m,, respectively.

The dynamics in pH form is as follows

] 0 I, 0
HEEEA O M EC
with G = col(1,0) and Hamiltonian

Hap) = o M4V (10)

Contact forces. The DoD model (9) relies on the assump-
tions that the object and the hand are always in contact
and there is not slipping. As discussed in [28, Chap. 5], by
using a simple Coulomb model for frictional forces (see [29]
for more elaborated models), the conditions on the normal
and frictional forces that ensure rolling can be written as

fn >0, (11)
el < 1ufn, (12)

where f,, and fy are the normal and frictional forces,
respectively, and p > 0 is the frictional coefficient. Further,
the normal and frictional forces can be written as follows
(13)
(14)

o = mO(yo + g) COS(SO) — Moo sin(<p),
fr = mo(jo + g)sin(p) + mei, cos(p),
where x, and y, are the components of the center of the

object P,. Using the DoD dynamics, the expression (13)
and (14) can be also written as follows

frn = mogcos(@) — mo(rh 4+ 76)p2, (15)
Mo(Th + To .

(16)

The control design in this paper, as in [5], does not
consider explicitly the constraints (11) and (12). However,
we will show later that the model assumptions are satisfied
by computing the normal and frictional forces using data
from experiments and verifying that the constraints are
met.

+mogsin(y).

B. Control objective

We aim at designing an IDA-PBC controller to stabi-
lize the DoD system at the equilibrium given by ¢, =
col(by, ¢x) and p, = col(0,0). There are two classes of
equilibrium points of interest. The first class corresponds
to the equilibria where the final position of the hand is not
of interest, that is gx; = col(é, 0) with 6 any constant angle
of the hand. The second class of equilibria corresponds to
the case where the final position of the hand is specified
gx2 = col(by,0) with 0, the desired position of the hand.
Note that the equilibrium on the momentum vector p
implies 9* =0 and ¢, =0.
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C. Control design

In this paper, we follow the approach proposed in [26]
and design the controller for the DoD system via IDA-PBC
without solving PDEs in the port-Hamiltonian framework.
The main idea in [26] is to design a controller in two steps.
First, a partial-feedback linearization as proposed in [30]
is performed. This partial-feedback linearisation controller
preserves, under certain assumptions, the Hamiltonian
structure. This fact has been first shown in [31] and is
fundamental for the design in [26]. Second, two passive
outputs are identified to build a Lyapunov energy-like
candidate function to design a controller that stabilizes
the system about an equilibrium point.

We recall here the assumptions made in [26] and [31]. We
consider a mechanical system with generic coordinates q =
(gas qu), where ¢, and ¢, are the actuated and unactuated
coordinates, respectively. The mass matrix is written as

M) = | e e .

May  Mun

(17)

Then, we make the following assumptions:

A1. The inertia matrix depends only on the unactuated
variables ¢y, i.e., M(q) = M(q,).

A2. The sub-block matrix mg, is constant.

A3. The potential energy can be written as V(q) =
Va(qa) + Viu(qu)-

A4. The rows of the matrix mg.,(q,) satisfy

M)k a(mau)j . . .

Day Oqu Vi#k, jkeZ:={1,---,n—m}.

The model of the DoD in coordinates (6, s) used in pre-
vious works [5] and [9] does not satisfy the Assumption
A3, therefore the approach in [26] cannot be applied.
However, the change of coordinates (6, s) — (0, ¢) allows
transforming the dynamic model such that it satisfies
Assumptions A1-A4. Therefore, we use the dynamics (9)
to design the controller.

To design the control law, we first apply a partial-
feedback linearisation controller (see [30] for details)

2
T = [Mn — M12] u+ @cg sin(yp),

18
Mo Moo (18)

to obtain a pH system as follows
a|l_| 0 I
p N _In 0

where ¢ = col(0,¢), p = col(ps,py,) = M(q)¢4, G =
col(1, —Mjs), and Hamiltonian

0

| v+ | o,

)}u (19)

H = 5"M7p4V() (20)
with M = diag(1, Ma2). Note that there is a momentum
transformation p — p defined as p = MM~ p, and a new
(acceleration) control input w.

As observed in [26], the partial-feedback linearisation
produces, under Assumptions A1-A4, two passive outputs

yo = pp and y, = —M2Ms,'p,. Indeed, considering

the storage functions Hy = %pg and H, = % Qalpi +

cg cos(p), we obtain that their time derivatives are

H9:y0U> Hw:ytpuv

which ensure passivity. Note that Assumptions A1-A4 are
required to ensure the existence of these two new passive
outputs via partial-feedback linearisation.

We propose a desired closed-loop energy function Hy as
follows

1
Hy = kelkoHo +hoHy) + 5 Ky (kayo + kuy,)”

+%KI [/t(kaye + k’uyw)dt] 2 : (21)

which is built using the storages energies Hy and H,, a
weighted sum of the passive outputs ys and y, and its
integral. The expression (21) can be explicitly written as
a state function by substituting Hy, H,, yg¢ and y,, by their
expression as functions of the states. After straightforward
calculations, we obtain that the desired closed-loop energy
can be written as in (3) with desired mass matrix

keka + k2K,
_kakuKkMzalMIQ
—koky K, My Myy!
koky Myy' + k2 Ky, M7y My

and desired potential function

MY =

(22)

K
Va(q) := kekycg cos(p) + 71[7%9 — kuMis(o + )], (23)

with k., kq, ku, Ki, K; and ¢ constant parameters to be
chosen such that M4(q) > 0, and g, = arg min V;(g), and
the minimum is isolated.

Proposition 1: Consider the system (19) in closed loop
with the control law

M
w = —K- [kuKkM”wV + Kilka — kuMis(ip + ©)]
22

(24)

_ Mo
— K 'K, (kapo — ku——po| |
p|: Do M22p<p

with K = ke + koKp + koKi 222, and K, > 0. The

constants ke, ko, kv, Ki, K; and c satisfy

ko(ke + ko Ky) >0, kokeky K >0 (25)
Kik2 >0, —kek, >0 (26)
K #0, (27)
kq
= . 2
c Y 0, (28)

Then, the following statements holds
i) The equilibrium ¢, = col(d,0) of the closed loop,
with K; = 0, is asymptotically stable.
1) The equilibrium ¢,o = col(6,,0) of the closed loop,
with K # 0, is asymptotically stable.

Proof First we note that the conditions imposed on the
parameters ensure that the desired mass matrix My is pos-
itive definite, and ¢, and ¢o, are minima of the potential
energy Vy with K; = 0 and Kj # 0 respectively. Indeed,
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using Sylvester’s criterion, the condition of the matrix

M, is satisfied if and only if (25) holds. The minimum

conditions on Vj are:

i) VVa(q)lg=q, =0 =

[ K[kge—K]k‘akuMm((p—FC) :| —0
—kekycgsin(p) — KrkyMiake8 — kyMiz(p + ¢)] q:;

which is satisfied for ¢, if K; = 0, and for ¢,o with ¢ as

in (28).
i) VQVd(Q”q:q* >0«
Krk? —Kikoky, Mo <0
—Krkoky Mo —kekycgcos(p) + Krk2 M2, = ’

which is satisfied provided that (26) holds true. The
condition (27) ensures that the controller is well-defined.

The stability of the closed loop is shown by choosing Hy
as a Lyapunov candidate function. Then, we compute its
time derivative along the dynamics (19) as follows

Hd = (kaPG - kuM12M2_21pga) keu + ko Kpu — ky K,

d _
dt [~ Mo Moy po] + Kr[kab — kuMia (i + )]
Mo I
= [ ] e b ]

M
+ |:kuKk12vtpV + Ki[ko — kyMiz(o + C)]} }
Moo
By using the control law « as proposed in (24), we obtain

: My 77
Hd = 7KP |:kn,p9 - ku 12p4,0:| I (29)

Mys

which ensures stability of the equilibrium. Asymptotic
stability follows using the invariance principle and stan-
dard Lyapunov theory [32]. Indeed, consider the set
S = {(¢,p)|Hs = 0}. Then, we obtain that k,Maops =
kuMiap, holds in S, and by differentiating this equality
respect to time, we obtain

kap@ = ku%pw (30)
The input takes the form u = %sin(cp)
from which, by comparing with (24), yields that ¢ is
constant. Therefore p, = 0 and ps = 0. Also, the dynamics
restricted to S implies that # is constant. Moreover, since
pg = 0, then u = 0 and ¢ = 0, and from (24), we obtain
that 6 = 0, when K; # 0, otherwise # = #. This proves
asymptotic stability of the desired equilibrium. ood

Remark 1: It can be shown that the complexity of the
controller 73, given in (18) with u as in (24) is the same
as the one of a controller obtained by using the classical
IDA-PBC design, which involves the task of solving the
PDEs of the matching equations.

Remark 2: The structure of the proposed controller that
asymptotically stabilizes both equilibria ¢.; or ¢ is the
same. The only difference being the gain K, which is set
to zero to stabilize ¢41, and K; # 0 to stabilize gyo.

D. Closed-loop dynamics

In this section, we show that the closed-loop dynamics
of the DoD has the form (4), therefore the control law
design in the previous section is an IDA-PBC controller.
Notice that the requirement on the closed-loop dynamics
was not considered in [26], however here we prove that the
closed loop actually preserves the pH form.

Proposition 2: Consider the dynamics of the DoD (9)
in closed loop with the controller (18), with u as in (24).
Then, the closed-loop dynamics has the pH form (4).

Proof First we note that the partial-feedback control in
(18) renders the system in the form (19). Then, we analyse
system (19) in closed loop with the inner controller u. The
closed loop dynamics has the form (4) if u satisfies

—V,H + G(q)u = —MyM ™'V Hy + (Jo — R)V,Hy. (31)

Using H from (20), Hy from (3) with desired mass matrix
and potential function (22) and (23), respectively, and G =
col(1, —Mj2), we obtain

~V,V +Gu= MMV, Vy+ (Jo — R)M; 'p.

We split the control input (24) in u = uy + ug with

M
Uy = —K_l |:kuKk]\412vtpV + Kj[k(ﬂ - k'uM12(30 + C)]:|
22
(32)
and
M
uy = —K 'K, [kape - ku”pw] . (33)
M22
Then, we will prove that
Guy = V,V— MMV, Vy, (34)
Guy = (Jo—R)M]'p. (35)

From (34) we obtain
M;'Guy = M;'V,V — MV, V,

|-
M
i

ka M
}Kul = {_k Mu} {kzukaV@V

U Moo M22

—Ki[kat — kyMia(e + C)]} )

which is clearly satisfied with u; as in (32). From (35) and
by setting J =0 and R = GK*IKPK*GT, we obtain

|»

which is satisfied with ug as in (33). Therefore, the closed
loop has the form (4) as claimed. ([

GUQ =
GU2 =

GK 'K, K 'G"M;'p
— M
GKK, | ko —hu 32

Remark 3: Notice that the DoD model used to design the
controller does not include damping forces. These forces
can compromise the passivity of the closed loop if they
are not handle properly. Future research will aim to extend
the design approach used here for the case when general
damping forces are present in the model.
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IV. SIMULATIONS

In this section, we present simulations to assess the
performance of the controller proposed in Section III-C.
We build a simulator of the dynamic model (9) in closed
loop with the control law 75, given in (18). The parameters
of the DoD are rp, = 0.15 m, r, = 0.075 m, mj; = 0.335 Kg,
m, = 0.220 Kg and g = 9.81 Kgm/s?, which correspond to
the prototype shown in Fig. 2 available at PRISMA Lab
and whose detailed description is available in Section V.

The simulations are performed under the following sce-
nario: the DoD starts at rest, and the initial conditions of
the balancing and hand angles are ¢(0) = 7 deg and § =0
deg, respectively. The desired equilibrium is ¢, = (0,0),
and the controller parameters are k, = 0.04, k, = —100,
ke = 0.01, Ky = 1, Kp = 10 and K; = 30. To enhance
the realism to the simulation, we have added noise, a zero-
order hold and a time delay of about 0.013 seconds to the
measurements. Also, we emulate parameter uncertainties
by using different values for the model parameter in the
controller and the DoD model (5% deviation). The time
histories of the hand and balancing angles are shown in
Figs. 3. The plots show that the hand angle converges to
the desired set-point, while the object is being balanced
on the upright position. Notice that the convergence of the
hand angle is slower than the settling time of the balancing
angle. There is a small oscillation about the equilibrium
due to the measurement noise; however, the control system
remains stable. Figure 4 shows the time histories of the
balancing and hand angular velocities, as well as the
control torque. It can be seen that the trajectories of the
velocities are smooth and within acceptable values, and
the torque demanded is reasonably smooth and remains
bounded by values achievable in a realistic scenario.

OBJECT
(free disk)
>

BLOCK TO 3
SELECT INITIAL 55

CONDITION 2 /%
CAMERA

'/é', ;\\

HAND 5 CONTROLLER \
AT DX
1 .

(actuated di
4

Fig. 2. Prototype of the DoD available at PRISMA Lab.

V. EXPERIMENTS
A. Ezxperimental set-up

We evaluate the performance of the controller in (18)
by using the experimental prototype shown in Fig. 2.
The lower disk is actuated by a DC motor (Harmonic
Drive RH-8D 3006) equipped with a harmonic drive whose
gearhead ratio is 100 1, and a 500 p/r quadrature
encoder. A rubber band of about 1 mm encircles both disks
to avoid slipping. The motor commands are provided by

50

o
T

Hland angle [deg]

Balancing position [deg]
DA N O N DO

5 Time[s] 10 15 0 5 Time[s] 10 15

Fig. 3. Time histories of the hand angle (¢) (left-hand side) and
the balancing angle ¢(t) (right-hand side). The initial conditions are
0(0) = 0 deg and ¢(0) = 7 deg. The hand reference is 6, = 0.

— Hand velocity 0.2
- Balancing velocity 0.1

- N W
o O O
o O O

-100]
200
-300

Velocities [deg/s]
o

0 5 Time[s) 1 5 0 10 15

5 Time [s]

Fig. 4. Time histories of the balancing and hand angular velocities,
@(t) and 6(t) respectively (left-hand side), and time history of the
input torque 7 (¢t) (right-hand side).

an ARM CORTEX M3 microcontroller (32 bit, 75 MHz).
This microcontroller receives current references from a
PC through an universal serial bus. The microcontroller
outputs the current reference for the motor servo, which
provides the torque to the hand disk. Therefore, we trans-
form the torque 75, in (18) in a current control, and we
implement an inner-loop current controller written as [5]
Th + pat + fisgn(0)

icom = k +kp(é_0) +kd<é_9)a (36)

where 6 and  are the desired hand position and velocity,
respectively, obtained by integrating (24) at each sample
time, while 7, is given by (18). The parameters k, and kg
are gains, which were set to 10 and 1, respectively; k,, =
4.20 is the motor constant available from the motor data-
sheet; pg = 0.29 is a viscous friction coefficient and f; =
0.3 is the torque required to overcome friction from rest.
The values of ug and f; were found by experiments [33].
The inner-loop current controller of the servo motor runs
at sample rate of 4KHz. In addition, the microcontroller
also provides the measurement of the hand position. The
control algorithm, which is written in C+++, runs on the
external PC with a Linux-based operating system. The
position of the object is provided by an external visual
system. This visual system consists of an uEye UI-122-
xLE camera providing 376 x 240 pixel images to the PC at
75 Hz, which is also the controller sample rate. In order to
speed up computations, a 15 x 15 pixel region of interest is
employed by the image elaboration algorithm running on
the same external PC. Notice that the set-up is mounted
in full gravity between two plexiglass plates. This differs
from [5] and [9], where the gravity is weakened.
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B. Case studies

In the first experiment, we set the reference for the
hand angle to zero, while the object is desired to be
stabilized at the upright position. Under this scenario, we
run the experiment using two controllers: the controller
proposed in Section III-C, noted as IDA-PBC, and the
full-state exact-feedback linearization controller proposed
in [5], noted as Linearization. We have tuned the param-
eters of the controllers at the best of our possibilities.
The parameters of the IDA-PBC controller used in the
experiments are k, = 0.004, k, = —100, k. = 0.01,
Ky =1, Kp =5 and K; = 30; and the parameters of the
feedback linearisation controller are k; = 100, ko = 55,
ks = 117 and k4 = 10. The left-hand side of Fig. 5 shows
that both controllers ensure that the hand converges to
the desired position. The plot shows that the IDA-PBC
controller drives the hand to the set-point reference faster
than the feedback linearization controller, which produces
a slow speed of convergence. This advantage is at expense
of a larger overshoot on the balance angle. Intuitively,
the larger the hand angle motion, the larger the induced
balancing angle motion. As can be seen on right-hand side
of Fig. 5, both controllers satisfactory balance the object at
the upright position. It seems, however, that the closed-
loop performance with fast hand convergence and large
overshoot or slower hand convergence and small overshoot
could be achieved by both controllers if their gain values
are appropriately chosen. Figure 6 shows the command
torques computed by the IDA-PBC and feedback lineariza-
tion controllers, and the torques produce by the motor and
delivered to the hand. Notice that the inner loop controller
produced the necessary torque to compensate the friction
forces and unmodeled dynamics of the DC motor. Finally,
the normal and frictional forces, computed using (15) and
(16) and the experimental data, are shown in Fig. 7. The
same figure also display the minimum frictional coefficient
Hmin = £11 heeded to ensure the rolling assumption. Since
the frictional coefficient for the set-up is p > 2, which is
obtained empirically, we infer that the constraints (11) and
(12) are satisfied and the rolling assumption is met.

— IDA-PBC — IDA-PBC
40 . - . -
- Linearization - Linearization

©

N

Hand angle [deg]

Balancing position [deg]
A o

0 2 4

10 12 0 2 4 6 8 10 12

Tithe [s] 8 Time [s]

Fig. 5. Time histories of the hand angle 0(t) (left-hand side) and
the balancing angle (¢) (right-hand side). The initial condition is
0(0) = 0 deg and ¢(0) = 6.3 deg, and the hand reference is 6, = 0.

In the second experiment, we test the IDA-PBC con-
troller recovering when a non-persistent disturbance acts
on the object. The initial conditions are the same as in
the first experiment, but now the object is pushed at time
about 8 seconds. Figures 8 shows the time history of the

o}
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o

A

Controller Torque [Nm]
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N p O o »
} Motquorque [Nm]

O
hS]

6 6
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Fig. 6. Time histories of the torque commanded by the controller

7 (t) (left-hand side) and the motor torque including compensations
Tm (t) = kmicom (t) (right-hand side).
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Fig. 7. Time histories of the normal and frictional forces fy (t) and
f(t) (left-hand side) and the lower bound for the frictional coefficient
tmin (t) (right-hand side).

hand and balancing angles. Under this scenario, the plots
show that the controller recovers the desired equilibrium.
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Fig. 8. Time histories of the hand angle 6(t) (left-hand side) and
the balancing angle ¢(t) (right-hand side). The initial conditions are
0(0) = 0 deg and ¢(0) = 6.3 deg, and the hand reference is 6, = 0.
A non-persistent disturbance is applied at about t = 8s.

In the third experiment, we change the set point of
the hand angle, and we set the desired equilibrium to
(0%, %) = (30°,0). The initial conditions are the same
as in the first experiment. The time histories of the hand
and balancing angles are depicted in Fig. 9.

The performance of the controller can be visualised in
a multimedia video recorded while performing the exper-
iments (available at https://youtu.be/oQ8hS6Hm__e4).

VI. CONCLUSION AND FUTURE WORK

We have investigated an IDA-PBC controller to balance
the upright unstable position of the nonprehensile DoD
system. We have developed the controller using passivity
and pH theory. The controller has been designed without
the need of solving PDEs. In addition, we have proved
that the closed-loop dynamics retain the pH form. Sim-
ulations and experiments bolster the applicability of the
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9. Time histories of the hand angle 0(t) (left-hand side) and

the balancing angle () (right-hand side). The initial condition is
0(0) = 0 deg and ¢(0) = 6.3 deg, and the hand reference is 6, = 30°.

presented theory in practice. In future work, we will focus
on the control design of other nonprehensile manipulation
primitives and their integration using passivity properties.

ACKNOWLEDGMENT

The research leading to these results has been supported
by the RoDyMan project, which has received funding
from the European Research Council FP7 Ideas under
Advanced Grant agreement number 320992. The authors
are solely responsible for the content of this manuscript.

The authors thank A. Fontanelli for his invaluable help
in writing the microcontroller code.

2]

(3]

(4]

(10]

(11]

REFERENCES

K. M. Lynch and M. T. Mason, “Dynamic nonprehensile ma-
nipulation: Controllability, planning, and experiments,” Inter-
national Journal of Robotics Research, vol. 18, no. 1, pp. 64-92,
1999.

M. T. Mason, “Progress in nonprehensile manipulation,” Inter-
national Journal of Robotics Research, vol. 18, no. 11, pp. 1129—
1141, 1999.

M. Lynch, K and T. D. Murphey, “Control of nonprehensile
manipulation,” in Control Problems in Robotics, A. Bicchi,
D. Prattichizzo, and H. Christensen, Eds. Springer Berlin
Heidelberg, 2003, pp. 39-57.

K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie, “The roles
of shape and motion in dynamic manipulation: The butterfly
example,” in IEEE International Conference on Robotics and
Automation, Leuven, Belgium, 1998, pp. 1958-1963.

J.-C. Ryu, F. Ruggiero, and K. M. Lynch, “Control of nonpre-
hensile rolling manipulation: Balancing a disk on a disk,” IEEE
Transactions on Robotics, vol. 29, no. 5, pp. 1152-1161, 2013.
M. Surov, A. Shiriaev, L. Freidovich, S. Gusev, and L. Para-
monov, “Case study in non-prehensile manipulation: Planning
perpetual rotations for “Butterfly” robot,” in IEEE Interna-
tional Conference on Robotics and Automation, Seattle, WA,
USA, 2015, pp. 1484-1489.

R. Ortega and E. Garcia-Canseco, “Interconnection and damp-
ing assignment passivity-based control: A survey,” FEuropean
Journal of Control, vol. 10, no. 5, pp. 432-450, 2004.

A. van der Schaft and D. Jeltsema, Port-Hamiltonian Systems
Theory: An Introductory Owerview.  The Netherlands: now
Publishers Inc, 2014.

J.-C. Ryu, F. Ruggiero, and K. M. Lynch, “Control of nonpre-
hensile rolling manipulation: Balancing a disk on a disk,” in
IEEE International Conference on Robotics and Automation,
St. Paul, MN, USA, 2012, pp. 3232-3237.

Z. Li and J. Canny, “Motion of two rigid bodies with rolling
constraint,” IEEE Transactions on Robotics and Automation,
vol. 6, no. 1, pp. 62-72, 1990.

S. Awtar, C. Bernard, N. Boklund, A. Master, D. Ueda, and
K. Craig, “Mechatronic design of a ball-on-plate balancing
system,” Mechatronics, vol. 12, no. 2, pp. 217-228, 2002.

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

(28]

29]

(30]

(31]

[32]
(33]

J. H. Park and Y. J. Lee, “Robust visual servoing for motion
control of the ball on a plate,” Mechatronics, vol. 13, no. 7, pp.
723-738, 2003.

C. Camicia, F. Conticelli, and A. Bicchi, “Nonholonomic kine-
matics and dynamics of the sphericle,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Taka-
matsu, Japan, 2000, pp. 805-810.

S. Bhattacharya and S. K. Agrawal, “Spherical rolling robot:
A design and motion planning studies,” IEEE Transactions on
Robotics and Automation, vol. 16, no. 6, pp. 835—-839, 2000.

J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via
approximate input-output linearization: The ball and beam
example,” IEEE Transactions on Automatic Control, vol. 37,
no. 3, pp. 392-398, 1992.

A. Teel and L. Praly, “Tools for semiglobal stabilization by
partial state and output feedback,” SIAM Journal on Control
and Optimization, vol. 33, no. 5, pp. 1443-1488, 1995.

R. Ortega, M. Spong, F. Gomez-Estern, and G. Blankenstein,
“Stabilization of a class of underactuated mechanical systems
via interconnection and damping assignment,” IEEE Transac-
tions on Automatic Control, vol. 47, no. 8, pp. 1218-1233, 2002.
C. Barbu, R. J. Sepulchre, W. Lin, and P. V. Kokotovic, “Global
asymptotic stabilization of the ball and beam system,” in IEEE
Conference on Decision and Control, San Diego, CA, USA,
1997, pp. 2351-2355.

N. B. Almutairi and M. Zribi, “On the sliding mode control of a
ball on a beam system,” Nonlinear Dynamics, vol. 59, no. 1-2,
pp. 221-238, 2010.

D. Hristu-Varsakelis, “The dynamics of a forced sphere plate
mechanical system,” IEEE Transactions on Automatic Control,
vol. 46, no. 5, pp. 678-686, 2001.

A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control
Chaplygin’s sphere using rotors,” Regular and Chaotic Dynam-
ics, vol. 17, no. 3-4, pp. 258-272, 2012.

M. Cefalo, L. Lanari, and G. Oriolo, “Energy-based control of
the butterfly robot,” in 8th International IFAC Symposium on
Robot Control, Bologna, Italy, 2006, pp. 1-6.

P. Choudhury and K. M. Lynch, “Rolling manipulation with
a single control,” International Journal of Robotics Research,
vol. 21, no. 5-6, pp. 457487, 2002.

B. Kiss, J. Lévine, and B. Lantos, “On motion planning for
robotic manipulation with permanent rolling contacts,” Inter-
national Journal of Robotics Research, vol. 21, no. 5-6, pp. 443—
461, 2002.

L. Cui and J. S. Dai, “A coordinate-free approach to instanta-
neous kinematics of two rigid objects with rolling contact and
its implications for trajectory planning,” in IEEE International
Conference on Robotics and Automation, Kobe, Japan, 2009,
pp- 612-617.

A. Donaire, R. Mehra, R. Ortega, S. Satpute, J. Romero,
F. Kazi, and N. Singh, “Shaping the energy of mechanical
systems without solving partial differential equations,” IEEE
Transactions on Automatic Control, vol. 61, no. 4, pp. 1051—
1056, 2016.

J. Acosta, R. Ortega, A. Astolfi, and A. Mahindrakar, “In-
terconnection and damping assignment passivity-based control
of mechanical systems with underactuation degree one,” IEEE
Transactions on Automatic Control, vol. 50, no. 12, pp. 1936—
1955, 2005.

R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduc-
tion to robotic manipulation. CRC Press, 1994.

C. L. Saux, R. I. Leine, and C. Glocker, “Dynamics of a rolling
disk in the presence of dry friction,” Journal of Nonlinear
Sceince, vol. 15, no. 1, pp. 27-61, 2005.

M. Spong, “Partial feedback linearization of underactuated me-
chanical systems,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Munich, Germany, 1994, pp.
314-321.

I. Sarras, J. Acosta, R. Ortega, and A. Mahindrakar, “Con-
tructive immersion and invariance stabilization for a class of
underactuated mechanical systems,” Automatica, vol. 49, no. 5,
pp. 1442-1448, 2013.

H. Khalil, Nonlinear Systems. Prentice Hall, 2002.

M. Spong, D. Block, and K. Astrom, “The mechatronics control
kit for education and research,” in IEEE Conference on Control
Applications, Mexico City, Mexico, 2001, pp. 105-110.



