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Abstract

This paper tackles the problem of controlling the position and orientation, expressed in a singularity-free
representation form, of the end-effector of a redundant robot, while addressing an active compliant behaviour
within the null-space. The manuscript extends the work in [1] by explicitly addressing the orientation part. In
order to successfully accomplish the task, a dynamic controller is designed without need of any exteroceptive
sensors information. A rigorous stability analysis is provided to confirm the developed theory. Experiments
are finally carried out to bolster the performance of the proposed approach.

Keywords: redundant robots, null-space compliance, singularity-free orientation representation

1. Introduction

The new generation of robots should have the in-
trinsic ability to share the operational environment
with humans. Often physical interaction occurs,
and this may happen at any part of the manipu-
lator body. The contact can be both intentional
(i.e., required for collaborative tasks) or uninten-
tional (i.e., unexpected collisions). To guarantee a
safe robot reaction to physical interaction, suitable
control strategies must be adopted, which may re-
quire the measurement or the estimate of the the
exchanged forces and moments, as well as the ef-
fective robot inertia, the relative velocity and the
distance between the robot and the human [2].
One solution could be to cover the whole ma-

nipulator body with a sensitive skin [3] to obtain
a direct measure of the exchanged force and mo-
ment as well as of the contact point. Nevertheless,
this solution seems to be rather far to be applied
at the moment. In case it is not possible to cover
the arm with sensors, an alternative solution is to
estimate the exchanged forces and moments on the
basis of the available measures of joints position
and/or torque, by using suitable observers [4] or
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neural interpolators [5]. This approach is adopted
in [6] for collision detection and safe reaction.

For safety reasons, in order to keep limited the
exchanged forces and moments, the manipulator is
often requested to be compliant in response to phys-
ical interaction. From a mechanical point of view,
such compliance can be passively achieved by us-
ing elastic decouplings between the actuators and
the commanded links through fixed or variable joint
stiffness [7]. On the other hand, active compliance
relies on the control action, and impedance con-
trol is the widest adopted approach to actively con-
trol the robot compliance [8, 9, 10, 11]. If the ex-
ternal interaction is likely to occur only on some
parts of the manipulator (i.e., the end-effector), a
force/torque sensor helps in fully control the desired
interaction with the environment via software. In
case of redundant robots, a compliant behaviour
can be imposed so as not to interfere with the main
task [10, 12], an thus the so called null-space com-
pliance or impedance is obtained. This is particu-
larly useful in those situations where it is desirable
to have the control of the interaction within the
joint space. In such cases, the external forces af-
fecting the main task must be suitably measured
and/or estimated to allow an impedance behaviour
as a secondary task without compromising the main
one. Null-space impedance can be also achieved in
multi-priority framework at acceleration level [12],
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or employing both a task error-based disturbance
observer and a momentum-based observer [1]. A
particular feature of the algorithm developed in [1]
is that it allows to fully compensate the error in
the task space caused by the physical interaction.
Of course, this is possible only if the robot pos-
sesses a sufficient number of redundant degrees of
freedom. In some applications, it is advisable to se-
lect a minimal number of task variables to be kept
unaffected in the case of physical interaction. More-
over, the task variables are usually a subset of those
representing the end-effector position and orienta-
tion. For example, if a robot waiter is carrying a
trail with some food, when somebody pushes the
arm, it is important to avoid the change of orien-
tation of the trail, or, at least, any roll and pitch
motions. Other approaches with redundant robots
do not instead explicitly require the use of an active
or passive compliance, but the manipulator’s pos-
ture is optimized to minimize the impact/external
wrench while carrying out the main task [13].

This work further develops what presented in [1],
where the algorithm is presented with reference to
generic task variables. In this paper, instead, the
task variables are explicitly the position and orien-
tation of the end effector. The orientation is consid-
ered in a non-minimal singularity free representa-
tion, e.g., axis-angle, unit quaternion. Notice that
using one of these two orientation representations,
the theoretical framework within [1] fails since the
closed-loop equations related to the angular part
are not in a linear form. As in [1], the pursued goal
is to control the robot manipulator in the Carte-
sian space while achieving an active compliant be-
haviour in the null-space. A dynamic term filtering
both the effects of velocity and external forces is
added to the controller to solve the task. A rigor-
ous stability analysis is also provided. Notice that
neither joint torque sensors nor force/torque sen-
sors at the end-effector are required to accomplish
the sought job.

The outline of the manuscript is as follows. Sec-
tion 2 presents the mathematical background neces-
sary to introduce the proposed control in Section 3.
The stability proof of the closed-loop system is car-
ried out in Section 4. Experiments confirming the
provided theory are provided in Section 5. Section 6
finally concludes the manuscript.

2. Background

The equations of motion of a n joints robot arm
can be written in the joint space according to the
following compact matrix form [8]

B(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τ ext, (1)

where q ∈ R
n, q̇ ∈ R

n and q̈ ∈ R
n are the po-

sition, velocity and acceleration joint vectors, re-
spectively; B(q) ∈ R

n×n is the inertia matrix in
the joint space; C(q, q̇) ∈ R

n×n is the matrix col-
lecting Coriolis and centrifugal effects; g(q) ∈ R

n

is the gravity vector term; τ ∈ R
n is the control

torques vector; τ ext ∈ R
n is the vector represent-

ing the external torques acting on the joints.
Notice that τ ext is a disturbance representing

both joints torque due to the physical interaction
with the environment and unmodelled effects. In
this paper, it is assumed that the manipulator is
equipped neither with torque sensors in the joints,
nor with force/torque sensors. Therefore, it is not
possible to measure τ ext.
Considering a redundant manipulator (n > 6, in

general), a joint space impedance control can be
achieved in the null-space of the Cartesian task,
or using a multi-priority redundancy resolution
scheme [14]. Let Σi and Σe be the inertial and
end-effector reference frames, respectively. Denote
with pe ∈ R

3 and Re ∈ SO(3) the position and the
orientation, respectively, of Σe in Σi. Consider the

vector υ =
[
ṗT
e ωT

e

]T ∈ R
6, where ωe ∈ R

3 is the
angular velocity of Σe with respect to Σi. The fol-
lowing relation between the joints velocity and the
end-effector velocity holds

υ = J(q)q̇, (2)

where J(q) ∈ R
6×n is the so-called geometric Jaco-

bian of the robot arm [8]. A general inverse solution
to (2) is given by q̇ = J(q)†υ + N(q)q̇N , where
J(q)† ∈ R

n×6 is any generalized inverse of J(q),
and N ∈ R

n×n is the matrix projecting the vector
q̇N ∈ R

n to the null-space of J(q). The vector q̇N

represents internal redundancy motions of the ma-
nipulator joints that do not affect the end-effector
velocity υ. It is assumed that the robot does not
pass close to singular joint configurations, i.e. J(q)
is full rank.
In order to better characterise the internal mo-

tions of a redundant manipulator, one solution
is to use the so-called joint space decomposition
method [10]. In this case the Cartesian coordinates
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are augmented by adding r = n− 6 auxiliary vari-
ables λ ∈ R

r to the end-effector velocity υ. These
auxiliary variables are defined as

q̇ = Nq̇N = Z(q)λ, (3)

where Z(q) ∈ R
n×r is such that J(q)Z(q) =

O6×r, where Oa×b ∈ R
a×b is a zero matrix

of proper dimensions. Therefore Z(q) is a ma-
trix spanning the null-space of J(q). Having
in mind (3), a convenient choice for λ is given
by the left inertia-weighted generalized inverse of
Z(q) [15], such that λ = Z(q)#q̇, with Z(q)# =(
Z(q)TB(q)Z(q)

)−1
Z(q)TB(q). By this choice,

it is possible to extend (2) through the following
form

ξ =

[
υ

λ

]
= JE(q)q̇ =

[
J(q)
Z(q)#

]
q̇, (4)

where

JE(q)
−1 =

[
J(q)# Z(q)

]
, (5)

is non-singular for full rank matrix J(q), and

J(q)# = B(q)−1J(q)T
(
J(q)B(q)−1J(q)T

)−1
is

the so-called dynamically consistent generalized in-
verse Jacobian [16], which plays a key role in null-
space dynamics [10]. Therefore, the following de-
compositions for the joints velocity and acceleration
hold

q̇ = J(q)#υ +Z(q)λ, (6)

q̈ = J−1
E (q)ξ̇ + J̇

−1

E (q)ξ. (7)

The complete dynamic model in both the task and
the null-space can be found in [10]: the related
derivation is here avoided.
The control objective is to satisfy a task in the

Cartesian space while achieving a compliant be-
haviour for the manipulator, without affecting the
main task. This will be also possible thanks to the
aforementioned choice of considering geometric con-
sistent generalized inverse matrices whose metric is
induced by the inertia matrix. The following con-
troller is then consider for the dynamic system (1)

τ = B(q)uq +C(q, q̇)q̇ + g(q), (8)

where uq ∈ R
n is a new virtual control input having

the dimension of joints acceleration. The closed-
loop dynamics assume the following form

q̈ = uq −B(q)−1τ ext. (9)

Having in mind (7) and (9), the following command
acceleration can be considered [1]

uq = J(q)#
(
uυ − J̇(q)q̇

)
+Z(q)

(
uλ − Ż(q)#q̇

)
,

(10)
where uυ ∈ R

6 and uλ ∈ R
r are new virtual con-

trol inputs having the dimension of Cartesian and
null-space accelerations, respectively. Folding (10)
in (9), and in turn in (7), it is then possible to
project the closed-loop dynamics in the Cartesian
space and in the null-space by multiplying both
sides of the resulting equation by J(q) and Z(q)#,
respectively, yielding

υ̇ = uυ − J(q)B(q)−1τ ext, (11)

λ̇ = uλ −Z(q)#B(q)−1τ ext. (12)

In the next section, the design of uυ and uλ is ad-
dressed.

3. Controllers

3.1. Controller for the main task

The main task for the robot consists in a de-
sired trajectory in the Cartesian space, expressed
in terms of position and orientation of the end-
effector. For the orientation, a general non-
minimum singularity free representation is adopted.
From (11) it is possible to notice how the external
torques applied to the manipulators may interfere
with the main task. An effective solution to this
problem is that of compensating the effects of τ ext

in the control law by using a suitable estimate of
this and compensating for its effects.
The desired trajectory for Σe is specified in terms

of the desired position pd ∈ R
3, orientation Rd ∈

SO(3), linear velocity ṗd ∈ R
3, angular velocity

ωd ∈ R
3, linear acceleration p̈d ∈ R

3 and angu-
lar acceleration ω̇d ∈ R

3, all with respect to Σi.
Having at disposition the current value of orienta-
tion Re, it is possible to define the deviation matrix
R̃ = RT

dRe ∈ SO(3).
A non-minimal representation for the deviation

rotation matrix R̃ can be obtained by resorting to
4 parameters α ∈ R

4 [8, 17]. Therefore, from R̃

it is possible to express the orientation error also
as õ = fo(α) ∈ R

3, with fo a generic vector

function of α and the property that ˙̃o = L(α)ω̃,
where L(α) ∈ R

3×3 is a nonsingular matrix and
ω̃ = ωe − ωd ∈ R

3 is the angular velocity er-
ror. Particular expressions regarding angle/axis
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and unit quaternion representations are given in the
Appendix.
In order to impose the main task, the controller

is then designed as follows

uυ = υ̇d +Dυeυ +Kυet − J(q)B(q)−1γ, (13a)

γ̇ = −KI(γ + τ ext) +K−1
γ B(q)−1J(q)Tυ,

(13b)

where υ̇d =
[
p̈T
d ω̇T

d

]T ∈ R
6, eυ =

[
˙̃p
T

ω̃
T

]T
∈

R
6, et =

[
p̃
T

õ
T
]T ∈ R

6, ˙̃p = ṗd − ṗe ∈ R
3,

p̃ = pd − pe ∈ R
3, γ ∈ R

n, Kυ = diag(Kp,Ko) ∈
R

6×6 with Kp ∈ R
3×3 a positive definite diagonal

gain matrix and Ko ∈ R
3×3 an invertible matrix.

Finally, Dυ ∈ R
6×6, KI ∈ R

n×n, and Kγ ∈ R
n×n

are positive definite diagonal gain matrices.
In order to compute (13b), notice how the mea-

sure of the external forces τ ext is in principle re-
quired. The manipulator dynamic model (1) might
be inverted so as to express τ ext as a function of
the control input τ and of other terms dependent on
the joint positions, velocity and accelerations. How-
ever, it is not difficult to show that equation (13b)
has a closed-form integral which can be directly
folded in (13a)

γ(t) = KI

(
B(q)q̇

−
∫ t

0

(
τ +C(q, q̇)Tq̇ − g(q) + γ(σ)

)
dσ

)

+K−1
γ

∫ t

0

B(q)−1J(q)Tυdσ,

(14)

where the measure neither of the joints acceleration
nor of the external forces is required. Notice that
the first term of (14) is equal to the momentum-
based observer of the external forces introduced
in [6]. It is thus possible to affirm that the dynamic
term γ tends to −τ ext at steady-state, provided
that KI is large enough [6].
Folding (13a) in (11), the corresponding Carte-

sian space closed-loop equation is

ėυ +Dυeυ +Kυet = J(q)B(q)−1eγ , (15)

with eγ = γ + τ ext ∈ R
n. Since at steady-state

γ → −τ ext, then eγ → 0n, with 0a ∈ R
a a zero vec-

tor. In this case, equation (15) is homogeneous for
the position part, but not for the orientation one.
Nevertheless, considering either angle/axis or unit

quaternion representations, it is possible to show
that the errors goes asymptotically to zero [17].
During motion this is not true. Asymptotically sta-
bility is anyway preserved in case of constant exter-
nal forces, i.e. τ̇ ext = 0n, as derived in Section 4.

3.2. Null-space impedance controller

In general, the null-space velocity vector λ is not
integrable [18] and, thus, a null-space position er-
ror cannot be defined. The null-space commanded
acceleration is then taken as in [1, 19]

(16)uλ = λ̇d +Λλ(q)
−1
(
(µλ(q, q̇) +Dλ) eλ

+ Z(q)T (Kqeq +Dqėq)
)
,

with Λλ(q) = Z(q)TB(q)Z(q) ∈ R
r×r, µλ(q, q̇) =(

Z(q)TC(q, q̇)−Λλ(q)Ż(q)#
)
Z(q) ∈ R

r×r,

eλ = λd − λ ∈ R
r, eq = qd − q ∈ R

n. The quan-

tities λd ∈ R
r and λ̇d ∈ R

r are the null-space de-
sired velocity and acceleration vectors, respectively,
while Dλ ∈ R

r×r, Kq ∈ R
n×n, and Dq ∈ R

n×n are
definite positive gain matrices, and qd ∈ R

n is the
constant desired value of the joint positions. No-
tice that the term Dqėq is not present in [1]: here
such derivative term is added to improve control
performance. Folding (16) in (12), the null-space
closed-loop equation is obtained

(17)Λλ(q)ėλ + (µλ(q, q̇) +Dλ) eλ

+Z(q)T (Kqeq +Dqėq) = Z(q)Tτ ext.

Equation (17) can be seen as an impedance equa-
tion defined in the null-space. The null-space iner-
tia matrix Λλ(q) and the null-space Coriolis matrix
µλ(q, q̇) cannot be modified, while matrices Dλ,
Kq and Dq can be tuned to specify the null-space
behiaviour. The vector on the right side of the
equation is the null-space projection of the exter-
nal torques. Notice that Λλ(q) is positive definite
and Λ̇λ(q)− 2µλ(q, q̇) is skew-symmetric [1].

4. Stability proof

The resulting block scheme of the proposed con-
troller is depicted in Figure 1. Given the designed
control inputs (13a), (14) and (16) the closed loop
system equations are given by (15) and (17). This
section is devoted to show that the system state
x = (eq, et, eυ, eγ , eλ) ∈ R

m, with m = 2n+r+12,
goes asymptotically to zero. The stability proof is
based on the concept of conditional stability [19].
The following theorem is thus firstly introduced.
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Robot

Inverse dynamic 

control

Eq. (8)

Commanded 

acceleration

Eq. (10)

Null-space 

impedance

Eq. (16)

Quaternion based 

controller

Eq.s (13a)-(14)

Figure 1: Block scheme of the proposed control architecture. In red, the related corresponding equations in the paper. The
full robot state enters in each block only for readability reasons.

Theorem 1. Consider a system ẋ = f (x), with
f(x) ∈ R

m, with x = 0m an equilibrium point. If
in a neighbourhood Ω of this equilibrium point there
exists a scalar continuous function V ∈ C1 such that

1. V (x) ≥ 0 for all x ∈ Ω and V (0m) = 0;

2. V̇ (x) ≤ 0 for all x ∈ Ω;

3. on the largest positive invariant set L ⊆ Y =
{x ∈ Ω : V̇ (x) = 0}, the system is asymptoti-
cally stable;

then the equilibrium point is asymptotically stable
for the system.

Proof. See [20].

It is then possible to introduce and prove the fol-
lowing proposition.

Proposition 1. Given a redundant robot arm
whose dynamic model is given by (1), the con-
trol law represented by equations (8), (13a), (14)
and (16) is able to guarantee regulation of a de-
sired task in the Cartesian space, while providing a
compliant behaviour in the null-space. Namely, pro-
vided that Kυ is a block-diagonal invertible matrix,
Dυ,KI ,Kγ ,Kq,Dq,Dλ are diagonal and positive
definite matrices, and assumed that τ̇ ext = q̇d =
0n, ṗd = ωd = 03 and λd = 0r, then

1. the state x = (eq, et, eυ, eγ , eλ) goes asymp-
totically to zero if τ ext = 0n, and qd is chosen
such that the manipulator end-effector is in the
pose (pd,Rd);

2. the state x = (q → q⋆, et → 06, eυ →
06, eγ → 0n, eλ → 0r) if τ ext 6= 0n and/or
qd is chosen such that the manipulator end-
effector is not in the pose (pd,Rd). The
term q⋆ ∈ R

n belongs to the set of solutions

which locally minimizes the quadratic function
‖Kqeq+Dqėq−τ ext‖2 subject to the condition
that the manipulator end-effector is located at
(pd,Rd).

Proof. This proof is based on Theorem 1. Consider
a neighbourhood Ω of the origin x = 0m. Define
the following scalar function

(18)
V (eυ, et, eγ) =

1

2
eTυ eυ +

1

2
eTt KV et

+
1

2
eTγKγeγ + fV (α),

with KV = diag(Kp,KV,2) ∈ R
6×6, where KV,2 ∈

R
3×3 is a positive definite diagonal matrix, and

fV (α) ∈ R ≥ 0. Such a function must have the
following properties

fV (α) = 0, if õ = 03, (19a)

ḟV (α) = ω̃
T
(
Ko −L(α)TKV,2

)
õ. (19b)

Notice that V (eυ, et, eγ) is positive semi-definite
in Ω and V (0m) = 0, satisfying the first point of
Theorem 1. The detailed expressions of fV , Ko

and KV,2 for the angle/axis and unit quaternion
representations are given in the Appendix.
Taking into account the expression for ˙̃o, the time

derivative of et is

ėt =

[
I3 O3

O3 L(α)

]
eυ, (20)

where Ia ∈ R
a×a is the identity matrix. On the

other hand, since for assumption τ̇ ext = 0n, then

ėγ = γ̇, (21)
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whose complete expression is given in (13b). There-
fore, having in mind (15), (19b), (20) and (21), de-
riving (18) with respect to time yields

V̇ = −eTυDυeυ − eTγKγKIeγ . (22)

Notice that (22) is negative semi-definite in Ω, sat-
isfying the second point of Theorem 1.
Consider the set Y = {x ∈ Ω : eq, et, eυ =

06, eγ = 0r, eλ}. With the given assumptions, no-
tice that in this set υ = 06. Point 3 of Theorem
1 is now addressed. Define the following candidate
Lyapunov function

VY =
1

2
eTλΛλ(q)eλ +

1

2
eTt et +

1

2
eTq Kqeq, (23)

which it positive definite on Y. Taking into ac-
count (6), (17), (20), and considering that ėq = −q̇

and eλ = −λ, the time derivative of (23) within Y
is

V̇Y = −λT
(
Dλ +Z(q)TDqZ(q)

)
λ

− λTZ(q)Tτ ext.

(24)

Taking into account (15), it is possible to notice
that the equality et = 06 holds within Y. This
implies both p̃ = 03 and õ = 03.
Consider the first point of Proposi-

tion 1. Since τ ext = 0n, then V̇Y =
−λT

(
Dλ +Z(q)TDqZ(q)

)
λ ≤ −λTDλλ,

which is negative semi-definite in Y. Therefore,
eλ → 0r. Invoking the La Salle’s invariance princi-
ple and having in mind (17), it is straightforward
to prove that eq → 0n [1]. Hence, for the above
considerations, the system is asymptotically stable
on the largest invariant set L ⊆ Y. This satisfies
the third and last point of Theorem 1, and thus
proves the first point of Proposition 1.
Consider the second point of Proposition 1.

When an external torque τ ext is applied, and/or
if the desired joints configuration qd is not cho-
sen such that the end-effector is located at the
desired configuration (pd,Rd) with respect to Σi,
the asymptotically stability of the system is still
preserved but the system reaches a different equi-
librium x = (q → q⋆, et → 06, eυ → 06, eγ →
0n, eλ → 0r) as shown in [1]. This because the ma-
nipulator reaches a joints configuration q⋆ which
is compatible with the main task (pd,Rd) and
minimizing the elastic potential energy ‖Kqeq +
Dqėq − τ ext‖2. The solution of this minimization

1
3

4

5

2

Figure 2: The KUKA LWR4 employed for the experiments in
the initial, and desired, configuration for the joints, and with
the desired orientation for the end-effector. The blue arrows
represents the contacts with the operator during tasks. The
label indicates the sequence of its contact.

is Z(q)T (Kqeq +Dqėq − τ ext) = 0r. As a con-

sequence, V̇Y is again less or equal to −λTDλλ,
and thus eλ tends to zero. Having also in mind the
above considerations, this proves the second point
of Proposition 1.

5. Experiments

The performances of the proposed approach are
experimentally verified on a KUKA LWR4. This
robot arm has n = 7 joints, meaning that it is
intrinsically redundant for any task fully defined
in the Cartesian space. The control algorithm is
written in C++ and executed on a remote PC
with an UBUNTU OS. This remote PC is con-
nected to a KUKA robot controller through UDP
socket. The sampling rate is 2 ms. The data are ex-
changed through the FRI (Fast Research Interface)
library [21].
In all of the performed experiments, an opera-

tor pushed the robot in different parts of its body.
The main task of the controller is to keep fixed
the initial orientation of the robot, while achiev-
ing null-space compliance. Therefore, the auxiliary
variables λ have dimension r = 4. The null-space
goal is to keep the initial position, denoted as qd.
Without loss of generality, only the unit quaternion
representation has been employed within the exper-
iments. The desired velocities and accelerations in
both spaces are zero. The initial configuration of
the arm is depicted in Figure 2. In such a figure,
the blue arrows indicate the performed contacts,
while the labels indicate the sequence of each con-
tact. The total time of the experiments is about
30 s. Having in mind that the above defined goals,
the gains have been experimentally tuned to the
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Figure 3: Time history of ‖õ‖ for the first case study.

following values: Kp = O3, Ko = 400I3, Dυ =
blockdiag{O3, 250I3}, KI = 100I7, Kγ = 100I7,
Kq = 30I7, Dq = 5I7, Dλ = 2I5. As highlighted
in [1], a particular care has to be put in the com-
putation of Z(q), where numerical calculation may
cause discontinuity in the solution. Mathematica
software has been employed in this case to symbol-
ically compute the matrix.

Two case studies are considered in the following,
exploiting the idea of carrying a given object, i.e.,
a bottle, on a tray (see Fig. 2). Namely, in the for-
mer case study, the γ term in (13a) is not taken
into account, that is both KI and K−1

γ are set to
zero in (14). The latter case study, instead, con-
siders the controller as a whole. Other case studies
are considered within the multimedia attachment:
i) In order to test the performance of the sole pose
controller, the null-space stiffness gain Kλ is set
to zero. In this way, the behaviour is very simi-
lar to a zero-force control. ii) The performance of
the proposed controller in case of impulsive exter-
nal forces is shown through the robustness of the
robot to unintentional collisions. This is also use-
ful to bolster the effectiveness of the approach in
human-robot interaction applications, like the case
of a robotic waiter carrying objects on a tray in a
crowded environment.

5.1. Case Study 1

In this case study, the matrix gains KI and K−1
γ

are set to zero. This means that γ within (13a) is
zero. Time histories of the performed experiments
are depicted from Fig. 3 to Fig. 6.

The deviation of the orientation of Σe from the
initial configuration, i.e. the time history of ‖õ‖,
is depicted in Fig. 3. While the non-dimensional
term õ is directly used in the control, it is not a
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Figure 4: Time history of õg for the first case study.
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Figure 5: Time history of ‖eq‖ for the first case study.

clear measure for a reader to understand. There-
fore, Fig. 4 shows the so-called geodesic measure
og on SO(3) [22]. This is a measure, in radians
or degree, expressing the distance of the deviation
matrix R̃ from the identity. Expressing with ‖·‖F
the Frobenius norm, the geodesic measure can be
computed as og = 1/

√
2‖logR̃‖F . Within the Ap-

pendix it is possible to find the relation between
R̃ and õ. It is possible to appreciate that the ori-
entation does not recover the error caused by the
interaction with the user. This is evident also for
the null-space task as in Fig. 5. The robot does not
reach again the initial configuration. The inputs
supplied to the robot are depicted in Fig. 6.

This case study bolsters the importance of hav-
ing the γ term within the controller. As explained
in Section 3.1, such a term is able to reconstruct
an estimation of the external forces acting on the
structure at the steady state. Without such an in-
formation, the controller is not able to recover the
external disturbance caused by the interaction and
then it is not possible to suitably control the inter-
action through both a main and a null-space com-
pliant task.
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Figure 6: Time history of ‖τ‖ for the first case study.
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Figure 7: Time history of ‖õ‖ for the second case study.

5.2. Case Study 2

In this case study, the whole controller is consid-
ered. Time histories of the performed experiments
are depicted from Fig. 7 to Fig. 11.
For this case, the deviation of the orientation of

Σe from the initial configuration, i.e. the time his-
tory of ‖õ‖, is depicted in Fig. 7, while the related
geodesic measure is shown in Fig. 8. Now, the norm
of the orientation error remains very small for all
the duration of the experiment, independently from
the occurring contacts with the user with the ma-
nipulator. At steady-state, the error norm is about
3.5 10−3 rad, that is about 0.2 deg. The error norm
does not come back exactly to zero due to the pres-
ence of non-negligible joint friction and other small
uncertainties that the system is not able to recover.

Regarding the null-space compliant task, the
joints configuration error, i.e. the time history of
‖eq‖, is shown in Fig. 9. It is possible to appreci-
ate that the manipulator, while it is rigid for the
end-effector orientation, is compliant in the rest of
its structure. Once each interaction ends, the ma-
nipulator recovers the initial configuration. There-
fore, also the initial end-effector position is recov-
ered. At steady-state, the joint error norm is about
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Figure 8: Time history of õg for the second case study.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Figure 9: Time history of ‖eq‖ for the second case study.

25 10−3 rad, that is about 1.4 deg. The same con-
siderations of above hold.
Finally, the time history of the γ term and the

manipulator input torques τ are depicted in Fig. 10
and Fig. 11, respectively.
It is worth pointing out that, since interaction

with a human is considered, it is not possible to
guarantee a constant τ ext during the experiments.
Even if the developed theory shows asymptotic sta-
bility only in case of constant external disturbances,
the overall performance remains good.

6. Conclusion

A task space controller based on a singularity
free representation for the orientation has been em-
ployed in this paper to control a redundant ma-
nipulator in the Cartesian space, while achieving
a compliant behaviour in the null-space. The de-
signed controller does not need any exteroceptive
sensors to accomplish the task, as well as no joints
torque sensors are requested. Redundancy is then
exploited to ensure a safe physical interaction in
case of intentional or unintentional contact with
humans, while preserving the main goal at the end-
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Figure 10: Time history of ‖γ‖ for the second case study.

Figure 11: Time history of ‖τ‖ for the second case study.

effector with specific reference also to the orienta-
tion. Theory and experimental results confirm the
effectiveness of the proposed control scheme. As
a future work, the tracking problem is the natu-
ral evolution of this paper and it is currently under
investigation.

Appendix

Angle/axis

The matrix R̃ can be also seen as a rotation of
an angle φ̃ ∈ R around the unit vector k̃ ∈ R

3, such
that R̃(α) = I3+sin φ̃S(k̃)+(1−cos φ̃)S(k̃)2, with

α =
[
φ̃ k̃

T
]T

, and where S(·) ∈ R
3 is the skew-

symmetric matrix. The angle is taken to be positive
counter-clockwise about the axis k̃. Notice that
such representation is not unique, since R̃(φ̃, k̃) =

R̃(−φ̃,−k̃).

Expressing the columns of the current and de-
sired rotation matrix of Σe with respect to Σi as
Re =

[
ne se ae

]
and Rd =

[
nd sd ad

]
, re-

spectively, it is possible to choose the following ex-

pression for the orientation error [8]

(25)
õ = f o(α)

=
1

2
(S(ne)nd + S(se)sd + S(ae)ad) .

The error in (25) is zero when R̃ = I3, that is the
axes of Rd and Re are aligned as desired, and thus
nd = ne, sd = se and ad = ae. Moreover, given
ωd = 03 as in the assumptions of Proposition 1, it
is possible to show that (20) holds with

(26)L(α) =
1

2
(S(nd)S(ne) + S(sd)S(se)

+ S(ad)S(ae)) .

Such a matrix is invertible as specified in [8]. Fi-
nally, it is possible to choose Ko = L(α)T and
KV,2 = I3. This allows to set fV = 0, for which it
is straightforward to verify (19).

Unit quaternion

Some drawbacks of the angle/axis representation
can be overcome by the unit quaternion. This is
a parameterization of the rotation matrix R̃ such
that

η̃ = cos

(
φ̃

2

)
, (27)

ǫ̃ = sin

(
φ̃

2

)
k̃, (28)

where ǫ̃ ∈ R
3 is called angular part of the quater-

nion, while η̃ ∈ R is its scalar part. The quater-
nion is termed unit since it satisfies the following
constraint ǫ̃

T
ǫ̃ + η̃2 = 1. Therefore, it is possible

to write R̃(α) =
(
η̃2 − ǫ̃

T
ǫ̃
)
I3 + 2ǫ̃ǫ̃T + 2η̃S(ǫ̃),

where α =
[
η̃ ǫ̃

T
]T

. Notice that the quaternion
space is a double cover of SO(3), since it can be
seen that (η̃, ǫ̃) and (−η̃,−ǫ̃) corresponds to the
same rotation matrix. Also notice that ǫ̃ = 03 if
and only if η̃ = ±1. Then (η̃ = 1, ǫ̃ = 03) and

(η̃ = −1, ǫ̃ = 03) correspond to R̃ = I3, and thus
Re = Rd as desired. Therefore, it is possible to
specify the orientation error as

õ = f o(α) = ǫ̃ (29)

for the unit quaternion representation. Moreover,
the following kinematic equations for the quater-
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nion hold

˙̃η = −1

2
ǫ̃
T
ω̃, (30a)

˙̃ǫ =
1

2
(η̃I3 + S(ǫ̃)) ω̃. (30b)

Observing (30b), the matrix L(α) in (20) can
thus be defined as

L(α) =
1

2
(η̃I3 + S(ǫ̃)) (31)

for the unit quaternion representation. Due to its
structure, it is straightforward to show that such a
matrix is always invertible. Finally, it is possible
to choose Ko = kǫI3, with kǫ > 0 and KV,2 =
2kǫI3. This allows to set fV = kǫ(η̃−1)2, for which,
given (30),it is possible to verify (19). Notice that,
when õ = ǫ̃ = 03, the indetermination η̃ = ±1 does
not affect the system stability [17].
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